MATH 431 - REAL ANALYSIS 1
SOLUTIONS TO HOMEWORK DUE OCTOBER 1

In class, we learned of the concept of an open cover of a set S C R™ as a collection F of open sets such that
sc A
AeF
We used this concept to define a compact set S as in which every infinite cover of S has a finite subcover.
Question 1. Show that the following subsets S are not compact by finding an infinite cover F that has no

finite subcover. Be sure to prove that your infinite cover does indeed have no finite subcover; usually a proof
by contradiction is best for these.

(a) 5=(0,1)
(b) §=(0,00)
A complete answer would include the following:
(i) providing the infinite cover F;
(ii) showing that S C U A;
AeF

(iii) showing that F has no finite subcover. The best way to do this is to assume, to the contrary, that there

exists some finite subcover F’. Then, show that S ¢ U A by finding an x € S such that z ¢ U A.
AeF’ ACF!

Solution 1.

(a) Let F ={(0,1—1/n)|n € Zy,n > 2}. First, we will show that

o0

0,1)c [ JO,1-1/n).

n=2

Let 2 € (0,1); thus 0 < < 1. Thus, 1 —x > 0. By the Archimedean Property, there exists an n € Z
such that 1 < (1 — z)n, and thus 1 — 1/n > x. Thus, since 0 <z < 1—1/n, z € (0,1 — 1/n). Thus,

ze G(o,l—m).

n=2

Next, assume, to the contrary, that F has a finite subcover F'. We will find an z € (0,1) such that is
not covered by F'. Since F' is a finite subcover, there exists a largest n such that (0,1 —1/n) € F'.
Since n is the largest such integer, them for all over (0,1 — 1/m) € F', m < n. Since m < n, then
1—1/m <1—1/n. Thus, (0,1 —1/m) C (0,1 —1/n). So,

U Ac0,1-1/n).

AeF’

However, 1 —1/(n+1) € (0,1) but 1 —1/(n+1) € (0,1 — 1/n). Thus, F’ does not cover (0,1). O



(b) Let F = {(n,(n+2))|a € N}. First we will show that
(0,00) C U (n,n+2).
n=0

Let z € (0,00). Then, x > 0. Since Z is unbounded, there exists some k € Z, such that x < k. Of all
of these k, choose the smallest such & (one exists by properties of Z,). Then, since k € Z;, k—1 € N.
Since k is the smallest k € Z such that z < k, then k£ — 1 < . Furthermore since x < k, then z < k+ 1.
Thus,

xe(k—1,k+1)C U(n,n—|—2).
n=1
Next, we show that this cover F has no finite subcover F’. Assume, to the contrary that it does. Then,
by finiteness, there is some largest n such that (n,n + 2) € F'. Consider the real number n + 3. Notice
that n +3 > 0 and thus n + 3 € (0,00). If n + 3 were still covered by F’, then there would exist some
k € N such that n+ 3 € (k, k4 2). Thus, n+ 3 < k+ 2 and thus, n < k — 1 < k, contradicting that n is
the largest such integer such that (n,n + 2) covers S. O

Question 2. Let S be a discrete set of R™. Show that S is compact if and only if S is finite. Note: The
direction “if S is finite, then S is compact” does not use the fact that S is discrete; it’s true for general finite
sets. In proving “If S is infinite, then S is non-compact,” you will have to produce an infinite cover of §
that has no finite subcover; in this direction, discreteness if necessary.

Solution 2. First, we prove “If S if finite, then S is compact.” Write S = {x1,za,...z,}. Let F be a cover
of S. Thus, x; € UAE}- A. Thus, there exists some A; € F such that x; € A;. Choosing one A; for each
x; produces at most n open sets. Define F' to be the finite subcollection F' = {A4;,..., A,}. Since each
r; € A;, we know that

S C LTLJ A;.
i=1

Thus, S is compact.

Conversely, assume that S is infinite. We will show that S is non-compact. Since S is discrete, each
x € S is isolated. Thus, for each x € S, there exists an €, > 0 such that B(z;e,) NS = {x}. Since each of
these balls is open, we can define the open cover

F ={B(z;e;)) |z € S}.

Since S is infinite, this F is an infinite open cover. We will show that F has no finite subcover. Assume F’
is a finite subcollection of F’. Then, since F is infinite, there is at least one (in fact, infinitely many) y € S
such that B(y;e,) ¢ F'. Since for all z € S, B(z;e,) NS = {x}, the only open set in F that contains y is
B(y;ey). Thus, removing it means that y ¢ (J,c» . Thus, 7’ is not a subcover. Thus, F is an open cover
of S with no finite subcover. Thus, S is not compact. O

Question 3. Prove the following theorem about compacts sets in R™..

(a) Show that a finite union of compact sets is compact.
(b) Let S be compact and T be closed. Show that S N T is compact.

(¢) Use (b) to quickly show that a closed subset of a compact set is compact.



(d)

Show that the intersection of arbitrarily many compact sets is compact.

Solution 3.

(a)

We prove this using the definition of compactness. Let Aj, As,... A, be compact sets. Consider the
union UZ:I Aj. We will show that this union is also compact. To this end, assume that F is an open
cover for UZ:1 Aj.. Since A; C UZ:I Ag, then F is also a cover for A;. By compactness of A;, there
exists a finite subcover F for A;. Consider F' = |JI_, F/. Since each F; is finite, and there are only
finitely many such ¢, 7' is finite as well. Furthermore, since each F, cover A;, then F’ covers UZ=1 Ag.
Thus, we have found a finite subcover for the union of our compact sets. Thus, it is compact.

Since S is compact, it is closed and bounded by the Heine-Borel Theorem. Since T is also closed, then
SNT is closed. Since SNT C S and S is bounded, S NT is also bounded. Thus, SNT is a closed and
bounded set and thus compact.

Since S be compact and T' C S be a closed subset of R™; Then, SNT =T. By (b), SNT = T must be
compact. Thus, T is compact.

Let G be a collection of compact sets. We will show that [, A is compact. Note that every A € G is
compact, and thus closed and bounded. Since the intersection of arbitrarily many closed sets is closed,
Neg A is also closed. Choose any A" € G. Since (g A C A" and A’ is bounded, then ()5 A is
bounded. Thus, acg A is closed and bounded; thus it is compact.

In class, we learned that a metric space is a set M along with a distance function d from M x M to R
satisfying the following properties for all z,y,z € M :

(i) POSITIVE-DEFINITE: d(z,y) > 0 and d(z,y) = 0 if and only if z = y.

(ii) SYMMETRY: d(z,y) = d(y, )

(ili) TRIANGLE INEQUALITY: d(z,2) < d(z,y) + d(y, 2).

Question 4. Show that the following sets and distance functions d are indeed metric spaces by verifying
that they satisfy the three metric space properties.

(a)
(b)

M = R, with distance function d(z,y) = | log(z/y)|.

M = R? with its L' distance function

d((z1,11), (X2, y2)) = |x1 — 2| + |y1 — Y2l

Solution 4.

(a)

POSITIVE-DEFINITE: Since the absolute value function is always non-negative, we have that

d(z,y) = [log(z/y)| = 0.

If = y, then d(x,2) = |log(x/x)| = log1 = 0. Lastly, assume that d(z,y) = 0. Then, |log(z/y)| =
0 and thus log(z/y) = 0. The only way for this to occur is if 2/y = 1, which is equivalent to z = y.



SYMMETRY:

d(z,y) = [log(z/y)| = [logx —logy| = | — 1|[logy — logz[ = [log(y/z)| = d(y, z).

TRIANGLE INEQUALITY: Notice that
d(z,z) = |log(xz/z)| = |logz — log z|.
Adding and subtracting log y and using the regular triangle inequality, we get that
d(xz,z) = |logz — logy + logy — log z| < |logz —logy| + |logy —log z| = d(z,y) + d(y, 2).
(b) POSITIVE-DEFINITE: Since |z1 — z2| > 0 and |y; — ya| > 0, then
d((z1,91), (T2,y2)) = |T1 — 22| + |y1 — Y2 > 0.
Now, assume that (z1,y1) = (22,y2). Then, |x; — 23] = 0 = |y; — y2|. Thus,
d((z1,y1), (T2,92)) = |21 — 22| + [y1 — Y| = 0.

Now, assume that d((z1,y1), (r2,y2)) = 0. Then, |21 — 23| + |y1 — y2| = 0. Since |z — 25| > 0 and
|y1 — y2| > 0, then it must be true that |1 —y1| = 0 and |xo — yo| = 0. Thus, z; = x5 and y; = ya.
So, (z1,y1) = (72, y2)-

SYMMETRY: Note that

d((z1,y1), (T2, y2)) = |x1 — 22| + |y1 — Y| = |2 — 21| + |y2 — v2| = d((z2,92), (z1,%1))-

TRIANGLE INEQUALITY: We begin with

d((z1,91), (23,93)) = |21 — 23| + [y1 — y3]-

If we add and subtract x5 and y5 into the two absolute values and apply the usual triangle inequality,
we get
d((z1,91), (23,93)) = [(21 — 22) + (12 — 23)| + [(Y1 — ¥2) + (¥2 — ¥3)|-

< |xy — xo| + |22 — @3] + |y1 — y2| + |y2 — 3]
= |21 — @a| + [y1 — Y| + |z2 — 3] + [y2 — ¥3]
=d((z1,y1), (2, y2)) + d((z2,y2), (3, y3))

Question 5. Let M be a non-empty set with metric d. Thus, d satisfies the three metric properties. Let
k > 0 and consider the new distance function d’ given by

d/(x,y) =k- d(x,y)

Show that d’ is also a metric on M by showing it satisfies the three metric properties.

Solution 5. First, we show that d’ is positive definite. Since d is positive definite, then d(x,y) > 0 for all
x,y € M. Multiplying by k > 0, we get that

Since k > 0 and d(z,y) = 0 if and only if z = y, then d'(z,y) = k - d(x,y) = 0 if and only if x = y.



Next, we show that d’ is symmetric. Since d is symmetric, we have that d(z,y) = d(y,x). Thus,
d'(z,y) =k-d(z,y) =k-d(y,z) =d (y,z).

Last, we show that d’ satisfies the triangle inequality. Since d is a metric, it satisfies a triangle inequality.
So,
d(z,2) < d(z,y) + d(y, ).

Since k > 0, we can multiply through to get

Satisfying all three metric properties, we have that d’ is a metric on M. O

Question 6. Let M be a non-empty set with two metrics d; and dy. Thus, d; and dy both satisfy the three
metric properties. Consider the new distance function d’ given by

d/(‘ray) = dl(xay) + dz(l‘,y).

Show that d’ is also a metric on M by showing that it satisfies the three metric properties.

Solution 6. First, we show that d’ is non-negative. Since di(x,y),da(x,y) > 0, then the sum of two
non-negative numbers is non-negative. So,

d'(z,y) = di(z,y) + da(x,y) > 0.

Since dy and dy are individually metrics, they have the property that di(x,y) = d2(x,y) = 0 if and only if
x =vy. Thus, if x =y, then
d(z,y) =d(z,x) = di(z,2) + da(z,2) = 0.

Conversely, if d'(z,y) = 0, then d;(z,y) + d2(x,y) = 0. Since each term is non-negative, the only way for
this to occur is if both d; and dy are zero. However, this occurs if and only if z = y.

Next, we will show d’ is symmetric. Since both d; and dy are symmetric, then d;(z,y) = di(y,z) and
d2(a:,y) = d2(y7x)' Thus,

dl(xa y) = dl(xa y) + d2($7 y) = dl(y7 (E) + d?(y7 .T) = dl(?/v LL‘)
Lastly, we show the triangle inequality holds for d’. Since it holds for d; and da, we have that the following

two inequalities hold:

d2(7,2) < d2(z,y) + d2(y, 2).
Adding the two inequalities, we get that
d'(z,2) = di(z,2) + da(2,2) < di(2,y) + di(y, 2) + da(2,y) + d2(y, 2) = d'(z,y) + d'(y,2).

Thus the triangle inequality holds.
Satisfying all three metric properties, we have that d’ is a metric on M. O



