Math 431 - Real Analysis I Solutions to Homework due October 1

In class, we learned of the concept of an open cover of a set $S \subset \mathbb{R}^{n}$ as a collection \mathcal{F} of open sets such that

$$
S \subset \bigcup_{A \in \mathcal{F}} A
$$

We used this concept to define a compact set S as in which every infinite cover of S has a finite subcover.

Question 1. Show that the following subsets S are not compact by finding an infinite cover \mathcal{F} that has no finite subcover. Be sure to prove that your infinite cover does indeed have no finite subcover; usually a proof by contradiction is best for these.
(a) $S=(0,1)$
(b) $S=(0, \infty)$

A complete answer would include the following:
(i) providing the infinite cover \mathcal{F};
(ii) showing that $S \subset \bigcup_{A \in \mathcal{F}} A$;
(iii) showing that \mathcal{F} has no finite subcover. The best way to do this is to assume, to the contrary, that there exists some finite subcover \mathcal{F}^{\prime}. Then, show that $S \not \subset \bigcup_{A \in \mathcal{F}^{\prime}} A$ by finding an $x \in S$ such that $x \notin \bigcup_{A \in \mathcal{F}^{\prime}} A$.

Solution 1.

(a) Let $\mathcal{F}=\left\{(0,1-1 / n) \mid n \in \mathbb{Z}_{+}, n \geq 2\right\}$. First, we will show that

$$
(0,1) \subset \bigcup_{n=2}^{\infty}(0,1-1 / n)
$$

Let $x \in(0,1)$; thus $0<x<1$. Thus, $1-x>0$. By the Archimedean Property, there exists an $n \in \mathbb{Z}_{+}$ such that $1<(1-x) n$, and thus $1-1 / n>x$. Thus, since $0<x<1-1 / n, x \in(0,1-1 / n)$. Thus,

$$
x \in \bigcup_{n=2}^{\infty}(0,1-1 / n)
$$

Next, assume, to the contrary, that \mathcal{F} has a finite subcover \mathcal{F}^{\prime}. We will find an $x \in(0,1)$ such that is not covered by \mathcal{F}^{\prime}. Since \mathcal{F}^{\prime} is a finite subcover, there exists a largest n such that $(0,1-1 / n) \in \mathcal{F}^{\prime}$. Since n is the largest such integer, them for all over $(0,1-1 / m) \in \mathcal{F}^{\prime}, m \leq n$. Since $m \leq n$, then $1-1 / m<1-1 / n$. Thus, $(0,1-1 / m) \subset(0,1-1 / n)$. So,

$$
\bigcup_{A \in \mathcal{F}^{\prime}} A \subset(0,1-1 / n)
$$

However, $1-1 /(n+1) \in(0,1)$ but $1-1 /(n+1) \notin(0,1-1 / n)$. Thus, \mathcal{F}^{\prime} does not cover $(0,1)$.
(b) Let $\mathcal{F}=\{(n,(n+2)) \mid a \in \mathbb{N}\}$. First we will show that

$$
(0, \infty) \subset \bigcup_{n=0}^{\infty}(n, n+2)
$$

Let $x \in(0, \infty)$. Then, $x>0$. Since \mathbb{Z}_{+}is unbounded, there exists some $k \in \mathbb{Z}_{+}$such that $x<k$. Of all of these k, choose the smallest such k (one exists by properties of \mathbb{Z}_{+}). Then, since $k \in \mathbb{Z}_{+}, k-1 \in \mathbb{N}$. Since k is the smallest $k \in \mathbb{Z}$ such that $x<k$, then $k-1<x$. Furthermore since $x<k$, then $x<k+1$. Thus,

$$
x \in(k-1, k+1) \subset \bigcup_{n=1}^{\infty}(n, n+2) .
$$

Next, we show that this cover \mathcal{F} has no finite subcover \mathcal{F}^{\prime}. Assume, to the contrary that it does. Then, by finiteness, there is some largest n such that $(n, n+2) \in \mathcal{F}^{\prime}$. Consider the real number $n+3$. Notice that $n+3>0$ and thus $n+3 \in(0, \infty)$. If $n+3$ were still covered by \mathcal{F}^{\prime}, then there would exist some $k \in \mathbb{N}$ such that $n+3 \in(k, k+2)$. Thus, $n+3<k+2$ and thus, $n<k-1<k$, contradicting that n is the largest such integer such that $(n, n+2)$ covers S.

Question 2. Let S be a discrete set of \mathbb{R}^{n}. Show that S is compact if and only if S is finite. Note: The direction "if S is finite, then S is compact" does not use the fact that S is discrete; it's true for general finite sets. In proving "If S is infinite, then S is non-compact," you will have to produce an infinite cover of S that has no finite subcover; in this direction, discreteness if necessary.

Solution 2. First, we prove "If S if finite, then S is compact." Write $S=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$. Let \mathcal{F} be a cover of S. Thus, $x_{i} \in \bigcup_{A \in \mathcal{F}} A$. Thus, there exists some $A_{i} \in \mathcal{F}$ such that $x_{i} \in A_{i}$. Choosing one A_{i} for each x_{i} produces at most n open sets. Define \mathcal{F}^{\prime} to be the finite subcollection $\mathcal{F}^{\prime}=\left\{A_{1}, \ldots, A_{n}\right\}$. Since each $x_{i} \in A_{i}$, we know that

$$
S \subset \bigcup_{i=1}^{n} A_{i}
$$

Thus, S is compact.
Conversely, assume that S is infinite. We will show that S is non-compact. Since S is discrete, each $x \in S$ is isolated. Thus, for each $x \in S$, there exists an $\varepsilon_{x}>0$ such that $B\left(x ; \varepsilon_{x}\right) \cap S=\{x\}$. Since each of these balls is open, we can define the open cover

$$
\left.\mathcal{F}=\left\{B\left(x ; \varepsilon_{x}\right)\right) \mid x \in S\right\}
$$

Since S is infinite, this \mathcal{F} is an infinite open cover. We will show that \mathcal{F} has no finite subcover. Assume \mathcal{F}^{\prime} is a finite subcollection of \mathcal{F}^{\prime}. Then, since \mathcal{F} is infinite, there is at least one (in fact, infinitely many) $y \in S$ such that $B\left(y ; \varepsilon_{y}\right) \notin \mathcal{F}^{\prime}$. Since for all $x \in S, B\left(x ; \varepsilon_{x}\right) \cap S=\{x\}$, the only open set in \mathcal{F} that contains y is $B\left(y ; \varepsilon_{y}\right)$. Thus, removing it means that $y \notin \bigcup_{A \in \mathcal{F}^{\prime}}$. Thus, \mathcal{F}^{\prime} is not a subcover. Thus, \mathcal{F} is an open cover of S with no finite subcover. Thus, S is not compact.

Question 3. Prove the following theorem about compacts sets in \mathbb{R}^{n}..
(a) Show that a finite union of compact sets is compact.
(b) Let S be compact and T be closed. Show that $S \cap T$ is compact.
(c) Use (b) to quickly show that a closed subset of a compact set is compact.
(d) Show that the intersection of arbitrarily many compact sets is compact.

Solution 3.

(a) We prove this using the definition of compactness. Let $A_{1}, A_{2}, \ldots A_{n}$ be compact sets. Consider the union $\bigcup_{k=1}^{n} A_{k}$. We will show that this union is also compact. To this end, assume that \mathcal{F} is an open cover for $\bigcup_{k=1}^{n} A_{k}$. Since $A_{i} \subset \bigcup_{k=1}^{n} A_{k}$, then \mathcal{F} is also a cover for A_{i}. By compactness of A_{i}, there exists a finite subcover \mathcal{F}_{i}^{\prime} for A_{i}. Consider $\mathcal{F}^{\prime}=\bigcup_{i=1}^{n} \mathcal{F}_{i}^{\prime}$. Since each \mathcal{F}_{i} is finite, and there are only finitely many such i, \mathcal{F}^{\prime} is finite as well. Furthermore, since each \mathcal{F}_{i}^{\prime} cover A_{i}, then \mathcal{F}^{\prime} covers $\bigcup_{k=1}^{n} A_{k}$. Thus, we have found a finite subcover for the union of our compact sets. Thus, it is compact.
(b) Since S is compact, it is closed and bounded by the Heine-Borel Theorem. Since T is also closed, then $S \cap T$ is closed. Since $S \cap T \subset S$ and S is bounded, $S \cap T$ is also bounded. Thus, $S \cap T$ is a closed and bounded set and thus compact.
(c) Since S be compact and $T \subset S$ be a closed subset of \mathbb{R}^{n}; Then, $S \cap T=T$. By (b), $S \cap T=T$ must be compact. Thus, T is compact.
(d) Let \mathcal{G} be a collection of compact sets. We will show that $\bigcap_{A \in \mathcal{G}} A$ is compact. Note that every $A \in \mathcal{G}$ is compact, and thus closed and bounded. Since the intersection of arbitrarily many closed sets is closed, $\bigcap_{A \in \mathcal{G}} A$ is also closed. Choose any $A^{\prime} \in \mathcal{G}$. Since $\bigcap_{A \in \mathcal{G}} A \subset A^{\prime}$ and A^{\prime} is bounded, then $\bigcap_{A \in \mathcal{G}} A$ is bounded. Thus, $\bigcap_{A \in \mathcal{G}} A$ is closed and bounded; thus it is compact.

In class, we learned that a metric space is a set M along with a distance function d from $M \times M$ to \mathbb{R} satisfying the following properties for all $x, y, z \in M$:
(i) Positive-definite: $d(x, y) \geq 0$ and $d(x, y)=0$ if and only if $x=y$.
(ii) Symmetry: $d(x, y)=d(y, x)$
(iii) Triangle Inequality: $d(x, z) \leq d(x, y)+d(y, z)$.

Question 4. Show that the following sets and distance functions d are indeed metric spaces by verifying that they satisfy the three metric space properties.
(a) $M=\mathbb{R}_{+}$with distance function $d(x, y)=|\log (x / y)|$.
(b) $M=\mathbb{R}^{2}$ with its L^{1} distance function

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|
$$

Solution 4.

(a) Positive-definite: Since the absolute value function is always non-negative, we have that

$$
d(x, y)=|\log (x / y)| \geq 0
$$

If $x=y$, then $d(x, x)=|\log (x / x)|=\log 1=0$. Lastly, assume that $d(x, y)=0$. Then, $|\log (x / y)|=$ 0 and thus $\log (x / y)=0$. The only way for this to occur is if $x / y=1$, which is equivalent to $x=y$.

Symmetry:

$$
d(x, y)=|\log (x / y)|=|\log x-\log y|=|-1||\log y-\log x|=|\log (y / x)|=d(y, x) .
$$

Triangle Inequality: Notice that

$$
d(x, z)=|\log (x / z)|=|\log x-\log z| .
$$

Adding and subtracting $\log y$ and using the regular triangle inequality, we get that

$$
d(x, z)=|\log x-\log y+\log y-\log z| \leq|\log x-\log y|+|\log y-\log z|=d(x, y)+d(y, z) .
$$

(b) Positive-definite: Since $\left|x_{1}-x_{2}\right| \geq 0$ and $\left|y_{1}-y_{2}\right| \geq 0$, then

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right| \geq 0 .
$$

Now, assume that $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$. Then, $\left|x_{1}-x_{2}\right|=0=\left|y_{1}-y_{2}\right|$. Thus,

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|=0 .
$$

Now, assume that $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=0$. Then, $\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|=0$. Since $\left|x_{1}-x_{2}\right| \geq 0$ and $\left|y_{1}-y_{2}\right| \geq 0$, then it must be true that $\left|x_{1}-y_{1}\right|=0$ and $\left|x_{2}-y_{2}\right|=0$. Thus, $x_{1}=x_{2}$ and $y_{1}=y_{2}$. So, $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$.

Symmetry: Note that

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{2}\right|=d\left(\left(x_{2}, y_{2}\right),\left(x_{1}, y_{1}\right)\right) .
$$

Triangle Inequality: We begin with

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right)=\left|x_{1}-x_{3}\right|+\left|y_{1}-y_{3}\right| .
$$

If we add and subtract x_{2} and y_{2} into the two absolute values and apply the usual triangle inequality, we get

$$
\begin{gathered}
d\left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right)=\left|\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)\right|+\left|\left(y_{1}-y_{2}\right)+\left(y_{2}-y_{3}\right)\right| . \\
\quad \leq\left|x_{1}-x_{2}\right|+\left|x_{2}-x_{3}\right|+\left|y_{1}-y_{2}\right|+\left|y_{2}-y_{3}\right| \\
\quad=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|+\left|x_{2}-x_{3}\right|+\left|y_{2}-y_{3}\right| \\
\quad=d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)+d\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right)
\end{gathered}
$$

Question 5. Let M be a non-empty set with metric d. Thus, d satisfies the three metric properties. Let $k>0$ and consider the new distance function d^{\prime} given by

$$
d^{\prime}(x, y)=k \cdot d(x, y) .
$$

Show that d^{\prime} is also a metric on M by showing it satisfies the three metric properties.

Solution 5. First, we show that d^{\prime} is positive definite. Since d is positive definite, then $d(x, y) \geq 0$ for all $x, y \in M$. Multiplying by $k>0$, we get that

$$
d^{\prime}(x, y)=k \cdot d(x, y) \geq 0 .
$$

Since $k \geq 0$ and $d(x, y)=0$ if and only if $x=y$, then $d^{\prime}(x, y)=k \cdot d(x, y)=0$ if and only if $x=y$.

Next, we show that d^{\prime} is symmetric. Since d is symmetric, we have that $d(x, y)=d(y, x)$. Thus,

$$
d^{\prime}(x, y)=k \cdot d(x, y)=k \cdot d(y, x)=d^{\prime}(y, x) .
$$

Last, we show that d^{\prime} satisfies the triangle inequality. Since d is a metric, it satisfies a triangle inequality. So,

$$
d(x, z) \leq d(x, y)+d(y, z) .
$$

Since $k>0$, we can multiply through to get

$$
d^{\prime}(x, z)=k \cdot d(x, z) \leq k \cdot d(x, y)+k \cdot d(y, z)=d^{\prime}(x, y)+d^{\prime}(y, z) .
$$

Satisfying all three metric properties, we have that d^{\prime} is a metric on M.

Question 6. Let M be a non-empty set with two metrics d_{1} and d_{2}. Thus, d_{1} and d_{2} both satisfy the three metric properties. Consider the new distance function d^{\prime} given by

$$
d^{\prime}(x, y)=d_{1}(x, y)+d_{2}(x, y) .
$$

Show that d^{\prime} is also a metric on M by showing that it satisfies the three metric properties.
Solution 6. First, we show that d^{\prime} is non-negative. Since $d_{1}(x, y), d_{2}(x, y) \geq 0$, then the sum of two non-negative numbers is non-negative. So,

$$
d^{\prime}(x, y)=d_{1}(x, y)+d_{2}(x, y) \geq 0
$$

Since d_{1} and d_{2} are individually metrics, they have the property that $d_{1}(x, y)=d_{2}(x, y)=0$ if and only if $x=y$. Thus, if $x=y$, then

$$
d^{\prime}(x, y)=d^{\prime}(x, x)=d_{1}(x, x)+d_{2}(x, x)=0 .
$$

Conversely, if $d^{\prime}(x, y)=0$, then $d_{1}(x, y)+d_{2}(x, y)=0$. Since each term is non-negative, the only way for this to occur is if both d_{1} and d_{2} are zero. However, this occurs if and only if $x=y$.

Next, we will show d^{\prime} is symmetric. Since both d_{1} and d_{2} are symmetric, then $d_{1}(x, y)=d_{1}(y, x)$ and $d_{2}(x, y)=d_{2}(y, x)$. Thus,

$$
d^{\prime}(x, y)=d_{1}(x, y)+d_{2}(x, y)=d_{1}(y, x)+d_{2}(y, x)=d^{\prime}(y, x) .
$$

Lastly, we show the triangle inequality holds for d^{\prime}. Since it holds for d_{1} and d_{2}, we have that the following two inequalities hold:

$$
\begin{aligned}
d_{1}(x, z) & \leq d_{1}(x, y)+d_{1}(y, z) \\
d_{2}(x, z) & \leq d_{2}(x, y)+d_{2}(y, z) .
\end{aligned}
$$

Adding the two inequalities, we get that

$$
d^{\prime}(x, z)=d_{1}(x, z)+d_{2}(x, z) \leq d_{1}(x, y)+d_{1}(y, z)+d_{2}(x, y)+d_{2}(y, z)=d^{\prime}(x, y)+d^{\prime}(y, z) .
$$

Thus the triangle inequality holds.
Satisfying all three metric properties, we have that d^{\prime} is a metric on M.

