Math 431 - Real Analysis I Solutions to Homework due October 1

In class, we learned of the concept of an open cover of a set $S \subset \mathbb{R}^n$ as a collection \mathcal{F} of open sets such that

$$S \subset \bigcup_{A \in \mathcal{F}} A.$$

We used this concept to define a *compact set* S as in which every infinite cover of S has a finite subcover.

Question 1. Show that the following subsets S are not compact by finding an infinite cover \mathcal{F} that has no finite subcover. Be sure to prove that your infinite cover does indeed have no finite subcover; usually a proof by contradiction is best for these.

- (a) S = (0,1)
- (b) $S = (0, \infty)$

A complete answer would include the following:

- (i) providing the infinite cover \mathcal{F} ;
- (ii) showing that $S \subset \bigcup_{A \in \mathcal{F}} A$;
- (iii) showing that \mathcal{F} has no finite subcover. The best way to do this is to assume, to the contrary, that there exists some finite subcover \mathcal{F}' . Then, show that $S \not\subset \bigcup_{A \in \mathcal{F}'} A$ by finding an $x \in S$ such that $x \not\in \bigcup_{A \in \mathcal{F}'} A$.

Solution 1.

(a) Let $\mathcal{F} = \{(0, 1 - 1/n) \mid n \in \mathbb{Z}_+, n \geq 2\}$. First, we will show that

$$(0,1) \subset \bigcup_{n=2}^{\infty} (0,1-1/n).$$

Let $x \in (0,1)$; thus 0 < x < 1. Thus, 1-x > 0. By the Archimedean Property, there exists an $n \in \mathbb{Z}_+$ such that 1 < (1-x)n, and thus 1-1/n > x. Thus, since 0 < x < 1-1/n, $x \in (0,1-1/n)$. Thus,

$$x \in \bigcup_{n=2}^{\infty} (0, 1 - 1/n).$$

Next, assume, to the contrary, that \mathcal{F} has a finite subcover \mathcal{F}' . We will find an $x \in (0,1)$ such that is not covered by \mathcal{F}' . Since \mathcal{F}' is a finite subcover, there exists a largest n such that $(0,1-1/n) \in \mathcal{F}'$. Since n is the largest such integer, them for all over $(0,1-1/m) \in \mathcal{F}'$, $m \leq n$. Since $m \leq n$, then 1-1/m < 1-1/n. Thus, $(0,1-1/m) \subset (0,1-1/n)$. So,

$$\bigcup_{A \in \mathcal{F}'} A \subset (0, 1 - 1/n).$$

However, $1 - 1/(n+1) \in (0,1)$ but $1 - 1/(n+1) \notin (0,1-1/n)$. Thus, \mathcal{F}' does not cover (0,1).

(b) Let $\mathcal{F} = \{(n, (n+2)) \mid a \in \mathbb{N}\}$. First we will show that

$$(0,\infty)\subset\bigcup_{n=0}^{\infty}(n,n+2).$$

Let $x \in (0, \infty)$. Then, x > 0. Since \mathbb{Z}_+ is unbounded, there exists some $k \in \mathbb{Z}_+$ such that x < k. Of all of these k, choose the smallest such k (one exists by properties of \mathbb{Z}_+). Then, since $k \in \mathbb{Z}_+$, $k - 1 \in \mathbb{N}$. Since k is the smallest $k \in \mathbb{Z}$ such that x < k, then k - 1 < x. Furthermore since x < k, then x < k + 1. Thus,

$$x \in (k-1, k+1) \subset \bigcup_{n=1}^{\infty} (n, n+2).$$

Next, we show that this cover \mathcal{F} has no finite subcover \mathcal{F}' . Assume, to the contrary that it does. Then, by finiteness, there is some largest n such that $(n, n+2) \in \mathcal{F}'$. Consider the real number n+3. Notice that n+3>0 and thus $n+3\in(0,\infty)$. If n+3 were still covered by \mathcal{F}' , then there would exist some $k\in\mathbb{N}$ such that $n+3\in(k,k+2)$. Thus, n+3< k+2 and thus, n< k-1< k, contradicting that n is the largest such integer such that (n,n+2) covers S.

Question 2. Let S be a discrete set of \mathbb{R}^n . Show that S is compact if and only if S is finite. Note: The direction "if S is finite, then S is compact" does not use the fact that S is discrete; it's true for general finite sets. In proving "If S is infinite, then S is non-compact," you will have to produce an infinite cover of S that has no finite subcover; in this direction, discreteness if necessary.

Solution 2. First, we prove "If S if finite, then S is compact." Write $S = \{x_1, x_2, \dots x_n\}$. Let \mathcal{F} be a cover of S. Thus, $x_i \in \bigcup_{A \in \mathcal{F}} A$. Thus, there exists some $A_i \in \mathcal{F}$ such that $x_i \in A_i$. Choosing one A_i for each x_i produces at most n open sets. Define \mathcal{F}' to be the finite subcollection $\mathcal{F}' = \{A_1, \dots, A_n\}$. Since each $x_i \in A_i$, we know that

$$S \subset \bigcup_{i=1}^{n} A_i.$$

Thus, S is compact.

Conversely, assume that S is infinite. We will show that S is non-compact. Since S is discrete, each $x \in S$ is isolated. Thus, for each $x \in S$, there exists an $\varepsilon_x > 0$ such that $B(x; \varepsilon_x) \cap S = \{x\}$. Since each of these balls is open, we can define the open cover

$$\mathcal{F} = \{ B(x; \varepsilon_x)) \, | \, x \in S \}.$$

Since S is infinite, this \mathcal{F} is an *infinite* open cover. We will show that \mathcal{F} has no finite subcover. Assume \mathcal{F}' is a finite subcollection of \mathcal{F}' . Then, since \mathcal{F} is infinite, there is at least one (in fact, infinitely many) $y \in S$ such that $B(y; \varepsilon_y) \notin \mathcal{F}'$. Since for all $x \in S$, $B(x; \varepsilon_x) \cap S = \{x\}$, the only open set in \mathcal{F} that contains y is $B(y; \varepsilon_y)$. Thus, removing it means that $y \notin \bigcup_{A \in \mathcal{F}'}$. Thus, \mathcal{F}' is not a subcover. Thus, \mathcal{F} is an open cover of S with no finite subcover. Thus, S is not compact.

Question 3. Prove the following theorem about compacts sets in \mathbb{R}^n ...

- (a) Show that a finite union of compact sets is compact.
- (b) Let S be compact and T be closed. Show that $S \cap T$ is compact.
- (c) Use (b) to quickly show that a closed subset of a compact set is compact.

(d) Show that the intersection of arbitrarily many compact sets is compact.

Solution 3.

- (a) We prove this using the definition of compactness. Let $A_1, A_2, \ldots A_n$ be compact sets. Consider the union $\bigcup_{k=1}^n A_k$. We will show that this union is also compact. To this end, assume that \mathcal{F} is an open cover for $\bigcup_{k=1}^n A_k$. Since $A_i \subset \bigcup_{k=1}^n A_k$, then \mathcal{F} is also a cover for A_i . By compactness of A_i , there exists a finite subcover \mathcal{F}'_i for A_i . Consider $\mathcal{F}' = \bigcup_{i=1}^n \mathcal{F}'_i$. Since each \mathcal{F}_i is finite, and there are only finitely many such i, \mathcal{F}' is finite as well. Furthermore, since each \mathcal{F}'_i cover A_i , then \mathcal{F}' covers $\bigcup_{k=1}^n A_k$. Thus, we have found a finite subcover for the union of our compact sets. Thus, it is compact.
- (b) Since S is compact, it is closed and bounded by the Heine-Borel Theorem. Since T is also closed, then $S \cap T$ is closed. Since $S \cap T \subset S$ and S is bounded, $S \cap T$ is also bounded. Thus, $S \cap T$ is a closed and bounded set and thus compact.
- (c) Since S be compact and $T \subset S$ be a closed subset of \mathbb{R}^n ; Then, $S \cap T = T$. By (b), $S \cap T = T$ must be compact. Thus, T is compact.
- (d) Let \mathcal{G} be a collection of compact sets. We will show that $\bigcap_{A \in \mathcal{G}} A$ is compact. Note that every $A \in \mathcal{G}$ is compact, and thus closed and bounded. Since the intersection of arbitrarily many closed sets is closed, $\bigcap_{A \in \mathcal{G}} A$ is also closed. Choose any $A' \in \mathcal{G}$. Since $\bigcap_{A \in \mathcal{G}} A \subset A'$ and A' is bounded, then $\bigcap_{A \in \mathcal{G}} A$ is bounded. Thus, $\bigcap_{A \in \mathcal{G}} A$ is closed and bounded; thus it is compact.

In class, we learned that a *metric space* is a set M along with a distance function d from $M \times M$ to \mathbb{R} satisfying the following properties for all $x, y, z \in M$:

- (i) Positive-definite: $d(x,y) \ge 0$ and d(x,y) = 0 if and only if x = y.
- (ii) Symmetry: d(x, y) = d(y, x)
- (iii) Triangle Inequality: $d(x, z) \le d(x, y) + d(y, z)$.

Question 4. Show that the following sets and distance functions d are indeed metric spaces by verifying that they satisfy the three metric space properties.

- (a) $M = \mathbb{R}_+$ with distance function $d(x, y) = |\log(x/y)|$.
- (b) $M = \mathbb{R}^2$ with its L^1 distance function

$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|.$$

Solution 4.

(a) Positive-definite: Since the absolute value function is always non-negative, we have that

$$d(x,y) = |\log(x/y)| \ge 0.$$

If x = y, then $d(x, x) = |\log(x/x)| = \log 1 = 0$. Lastly, assume that d(x, y) = 0. Then, $|\log(x/y)| = 0$ and thus $\log(x/y) = 0$. The only way for this to occur is if x/y = 1, which is equivalent to x = y.

Symmetry:

$$d(x,y) = |\log(x/y)| = |\log x - \log y| = |-1| |\log y - \log x| = |\log(y/x)| = d(y,x).$$

TRIANGLE INEQUALITY: Notice that

$$d(x, z) = |\log(x/z)| = |\log x - \log z|.$$

Adding and subtracting $\log y$ and using the regular triangle inequality, we get that

$$d(x, z) = |\log x - \log y + \log y - \log z| \le |\log x - \log y| + |\log y - \log z| = d(x, y) + d(y, z).$$

(b) Positive-definite: Since $|x_1 - x_2| \ge 0$ and $|y_1 - y_2| \ge 0$, then

$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2| \ge 0.$$

Now, assume that $(x_1, y_1) = (x_2, y_2)$. Then, $|x_1 - x_2| = 0 = |y_1 - y_2|$. Thus,

$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2| = 0.$$

Now, assume that $d((x_1, y_1), (x_2, y_2)) = 0$. Then, $|x_1 - x_2| + |y_1 - y_2| = 0$. Since $|x_1 - x_2| \ge 0$ and $|y_1 - y_2| \ge 0$, then it must be true that $|x_1 - y_1| = 0$ and $|x_2 - y_2| = 0$. Thus, $x_1 = x_2$ and $y_1 = y_2$. So, $(x_1, y_1) = (x_2, y_2)$.

SYMMETRY: Note that

$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2| = |x_2 - x_1| + |y_2 - y_2| = d((x_2, y_2), (x_1, y_1)).$$

TRIANGLE INEQUALITY: We begin with

$$d((x_1, y_1), (x_3, y_3)) = |x_1 - x_3| + |y_1 - y_3|.$$

If we add and subtract x_2 and y_2 into the two absolute values and apply the usual triangle inequality, we get

$$d((x_1, y_1), (x_3, y_3)) = |(x_1 - x_2) + (x_2 - x_3)| + |(y_1 - y_2) + (y_2 - y_3)|.$$

$$\leq |x_1 - x_2| + |x_2 - x_3| + |y_1 - y_2| + |y_2 - y_3|$$

$$= |x_1 - x_2| + |y_1 - y_2| + |x_2 - x_3| + |y_2 - y_3|$$

$$= d((x_1, y_1), (x_2, y_2)) + d((x_2, y_2), (x_3, y_3))$$

Question 5. Let M be a non-empty set with metric d. Thus, d satisfies the three metric properties. Let k > 0 and consider the new distance function d' given by

$$d'(x, y) = k \cdot d(x, y).$$

Show that d' is also a metric on M by showing it satisfies the three metric properties.

Solution 5. First, we show that d' is positive definite. Since d is positive definite, then $d(x,y) \ge 0$ for all $x,y \in M$. Multiplying by k > 0, we get that

$$d'(x,y) = k \cdot d(x,y) > 0.$$

Since $k \ge 0$ and d(x,y) = 0 if and only if x = y, then $d'(x,y) = k \cdot d(x,y) = 0$ if and only if x = y.

Next, we show that d' is symmetric. Since d is symmetric, we have that d(x,y) = d(y,x). Thus,

$$d'(x,y) = k \cdot d(x,y) = k \cdot d(y,x) = d'(y,x).$$

Last, we show that d' satisfies the triangle inequality. Since d is a metric, it satisfies a triangle inequality. So,

$$d(x,z) \le d(x,y) + d(y,z).$$

Since k > 0, we can multiply through to get

$$d'(x,z) = k \cdot d(x,z) \le k \cdot d(x,y) + k \cdot d(y,z) = d'(x,y) + d'(y,z).$$

Satisfying all three metric properties, we have that d' is a metric on M.

Question 6. Let M be a non-empty set with two metrics d_1 and d_2 . Thus, d_1 and d_2 both satisfy the three metric properties. Consider the new distance function d' given by

$$d'(x,y) = d_1(x,y) + d_2(x,y).$$

Show that d' is also a metric on M by showing that it satisfies the three metric properties.

Solution 6. First, we show that d' is non-negative. Since $d_1(x,y), d_2(x,y) \geq 0$, then the sum of two non-negative numbers is non-negative. So,

$$d'(x,y) = d_1(x,y) + d_2(x,y) \ge 0.$$

Since d_1 and d_2 are individually metrics, they have the property that $d_1(x,y) = d_2(x,y) = 0$ if and only if x = y. Thus, if x = y, then

$$d'(x,y) = d'(x,x) = d_1(x,x) + d_2(x,x) = 0.$$

Conversely, if d'(x,y) = 0, then $d_1(x,y) + d_2(x,y) = 0$. Since each term is non-negative, the only way for this to occur is if both d_1 and d_2 are zero. However, this occurs if and only if x = y.

Next, we will show d' is symmetric. Since both d_1 and d_2 are symmetric, then $d_1(x,y) = d_1(y,x)$ and $d_2(x,y) = d_2(y,x)$. Thus,

$$d'(x,y) = d_1(x,y) + d_2(x,y) = d_1(y,x) + d_2(y,x) = d'(y,x).$$

Lastly, we show the triangle inequality holds for d'. Since it holds for d_1 and d_2 , we have that the following two inequalities hold:

$$d_1(x,z) \le d_1(x,y) + d_1(y,z)$$

$$d_2(x,z) \le d_2(x,y) + d_2(y,z).$$

Adding the two inequalities, we get that

$$d'(x,z) = d_1(x,z) + d_2(x,z) \le d_1(x,y) + d_1(y,z) + d_2(x,y) + d_2(y,z) = d'(x,y) + d'(y,z).$$

Thus the triangle inequality holds.

Satisfying all three metric properties, we have that d' is a metric on M.