
Math 431 - Real Analysis I
Solutions to Homework due October 1

In class, we learned of the concept of an open cover of a set S ⊂ Rn as a collection F of open sets such that

S ⊂
⋃
A∈F

A.

We used this concept to define a compact set S as in which every infinite cover of S has a finite subcover.

Question 1. Show that the following subsets S are not compact by finding an infinite cover F that has no
finite subcover. Be sure to prove that your infinite cover does indeed have no finite subcover; usually a proof
by contradiction is best for these.

(a) S = (0, 1)

(b) S = (0,∞)

A complete answer would include the following:

(i) providing the infinite cover F ;

(ii) showing that S ⊂
⋃
A∈F

A;

(iii) showing that F has no finite subcover. The best way to do this is to assume, to the contrary, that there

exists some finite subcover F ′. Then, show that S 6⊂
⋃

A∈F ′

A by finding an x ∈ S such that x 6∈
⋃

A∈F ′

A.

Solution 1.

(a) Let F = {(0, 1− 1/n) |n ∈ Z+, n ≥ 2}. First, we will show that

(0, 1) ⊂
∞⋃

n=2

(0, 1− 1/n).

Let x ∈ (0, 1); thus 0 < x < 1. Thus, 1− x > 0. By the Archimedean Property, there exists an n ∈ Z+

such that 1 < (1− x)n, and thus 1− 1/n > x. Thus, since 0 < x < 1− 1/n, x ∈ (0, 1− 1/n). Thus,

x ∈
∞⋃

n=2

(0, 1− 1/n).

Next, assume, to the contrary, that F has a finite subcover F ′. We will find an x ∈ (0, 1) such that is
not covered by F ′. Since F ′ is a finite subcover, there exists a largest n such that (0, 1 − 1/n) ∈ F ′.
Since n is the largest such integer, them for all over (0, 1 − 1/m) ∈ F ′, m ≤ n. Since m ≤ n, then
1− 1/m < 1− 1/n. Thus, (0, 1− 1/m) ⊂ (0, 1− 1/n). So,⋃

A∈F ′

A ⊂ (0, 1− 1/n).

However, 1− 1/(n + 1) ∈ (0, 1) but 1− 1/(n + 1) 6∈ (0, 1− 1/n). Thus, F ′ does not cover (0, 1).

1



(b) Let F = {(n, (n + 2)) | a ∈ N}. First we will show that

(0,∞) ⊂
∞⋃

n=0

(n, n + 2).

Let x ∈ (0,∞). Then, x > 0. Since Z+ is unbounded, there exists some k ∈ Z+ such that x < k. Of all
of these k, choose the smallest such k (one exists by properties of Z+). Then, since k ∈ Z+, k − 1 ∈ N.
Since k is the smallest k ∈ Z such that x < k, then k− 1 < x. Furthermore since x < k, then x < k + 1.
Thus,

x ∈ (k − 1, k + 1) ⊂
∞⋃

n=1

(n, n + 2).

Next, we show that this cover F has no finite subcover F ′. Assume, to the contrary that it does. Then,
by finiteness, there is some largest n such that (n, n + 2) ∈ F ′. Consider the real number n + 3. Notice
that n + 3 > 0 and thus n + 3 ∈ (0,∞). If n + 3 were still covered by F ′, then there would exist some
k ∈ N such that n+ 3 ∈ (k, k + 2). Thus, n+ 3 < k + 2 and thus, n < k− 1 < k, contradicting that n is
the largest such integer such that (n, n + 2) covers S.

Question 2. Let S be a discrete set of Rn. Show that S is compact if and only if S is finite. Note: The
direction “if S is finite, then S is compact” does not use the fact that S is discrete; it’s true for general finite
sets. In proving “If S is infinite, then S is non-compact,” you will have to produce an infinite cover of S
that has no finite subcover; in this direction, discreteness if necessary.

Solution 2. First, we prove “If S if finite, then S is compact.” Write S = {x1, x2, . . . xn}. Let F be a cover
of S. Thus, xi ∈

⋃
A∈F A. Thus, there exists some Ai ∈ F such that xi ∈ Ai. Choosing one Ai for each

xi produces at most n open sets. Define F ′ to be the finite subcollection F ′ = {A1, . . . , An}. Since each
xi ∈ Ai, we know that

S ⊂
n⋃

i=1

Ai.

Thus, S is compact.
Conversely, assume that S is infinite. We will show that S is non-compact. Since S is discrete, each

x ∈ S is isolated. Thus, for each x ∈ S, there exists an εx > 0 such that B(x; εx) ∩ S = {x}. Since each of
these balls is open, we can define the open cover

F = {B(x; εx)) |x ∈ S}.

Since S is infinite, this F is an infinite open cover. We will show that F has no finite subcover. Assume F ′

is a finite subcollection of F ′. Then, since F is infinite, there is at least one (in fact, infinitely many) y ∈ S
such that B(y; εy) 6∈ F ′. Since for all x ∈ S, B(x; εx) ∩ S = {x}, the only open set in F that contains y is
B(y; εy). Thus, removing it means that y 6∈

⋃
A∈F ′ . Thus, F ′ is not a subcover. Thus, F is an open cover

of S with no finite subcover. Thus, S is not compact.

Question 3. Prove the following theorem about compacts sets in Rn..

(a) Show that a finite union of compact sets is compact.

(b) Let S be compact and T be closed. Show that S ∩ T is compact.

(c) Use (b) to quickly show that a closed subset of a compact set is compact.
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(d) Show that the intersection of arbitrarily many compact sets is compact.

Solution 3.

(a) We prove this using the definition of compactness. Let A1, A2, . . . An be compact sets. Consider the
union

⋃n
k=1 Ak. We will show that this union is also compact. To this end, assume that F is an open

cover for
⋃n

k=1 Ak. Since Ai ⊂
⋃n

k=1 Ak, then F is also a cover for Ai. By compactness of Ai, there
exists a finite subcover F ′

i for Ai. Consider F ′ =
⋃n

i=1 F ′
i . Since each Fi is finite, and there are only

finitely many such i, F ′ is finite as well. Furthermore, since each F ′
i cover Ai, then F ′ covers

⋃n
k=1 Ak.

Thus, we have found a finite subcover for the union of our compact sets. Thus, it is compact.

(b) Since S is compact, it is closed and bounded by the Heine-Borel Theorem. Since T is also closed, then
S ∩ T is closed. Since S ∩ T ⊂ S and S is bounded, S ∩ T is also bounded. Thus, S ∩ T is a closed and
bounded set and thus compact.

(c) Since S be compact and T ⊂ S be a closed subset of Rn¿ Then, S ∩ T = T . By (b), S ∩ T = T must be
compact. Thus, T is compact.

(d) Let G be a collection of compact sets. We will show that
⋂

A∈G A is compact. Note that every A ∈ G is
compact, and thus closed and bounded. Since the intersection of arbitrarily many closed sets is closed,⋂

A∈G A is also closed. Choose any A′ ∈ G. Since
⋂

A∈G A ⊂ A′ and A′ is bounded, then
⋂

A∈G A is
bounded. Thus,

⋂
A∈G A is closed and bounded; thus it is compact.

In class, we learned that a metric space is a set M along with a distance function d from M ×M to R
satisfying the following properties for all x, y, z ∈M :

(i) Positive-definite: d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.

(ii) Symmetry: d(x, y) = d(y, x)

(iii) Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z).

Question 4. Show that the following sets and distance functions d are indeed metric spaces by verifying
that they satisfy the three metric space properties.

(a) M = R+ with distance function d(x, y) = | log(x/y)|.

(b) M = R2 with its L1 distance function

d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|.

Solution 4.

(a) Positive-definite: Since the absolute value function is always non-negative, we have that

d(x, y) = | log(x/y)| ≥ 0.

If x = y, then d(x, x) = | log(x/x)| = log 1 = 0. Lastly, assume that d(x, y) = 0. Then, | log(x/y)| =
0 and thus log(x/y) = 0. The only way for this to occur is if x/y = 1, which is equivalent to x = y.
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Symmetry:

d(x, y) = | log(x/y)| = | log x− log y| = | − 1| | log y − log x| = | log(y/x)| = d(y, x).

Triangle Inequality: Notice that

d(x, z) = | log(x/z)| = | log x− log z|.

Adding and subtracting log y and using the regular triangle inequality, we get that

d(x, z) = | log x− log y + log y − log z| ≤ | log x− log y|+ | log y − log z| = d(x, y) + d(y, z).

(b) Positive-definite: Since |x1 − x2| ≥ 0 and |y1 − y2| ≥ 0, then

d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2| ≥ 0.

Now, assume that (x1, y1) = (x2, y2). Then, |x1 − x2| = 0 = |y1 − y2|. Thus,

d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2| = 0.

Now, assume that d((x1, y1), (x2, y2)) = 0. Then, |x1 − x2|+ |y1 − y2| = 0. Since |x1 − x2| ≥ 0 and
|y1− y2| ≥ 0, then it must be true that |x1− y1| = 0 and |x2− y2| = 0. Thus, x1 = x2 and y1 = y2.
So, (x1, y1) = (x2, y2).

Symmetry: Note that

d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2| = |x2 − x1|+ |y2 − y2| = d((x2, y2), (x1, y1)).

Triangle Inequality: We begin with

d((x1, y1), (x3, y3)) = |x1 − x3|+ |y1 − y3|.

If we add and subtract x2 and y2 into the two absolute values and apply the usual triangle inequality,
we get

d((x1, y1), (x3, y3)) = |(x1 − x2) + (x2 − x3)|+ |(y1 − y2) + (y2 − y3)|.

≤ |x1 − x2|+ |x2 − x3|+ |y1 − y2|+ |y2 − y3|

= |x1 − x2|+ |y1 − y2|+ |x2 − x3|+ |y2 − y3|

= d((x1, y1), (x2, y2)) + d((x2, y2), (x3, y3))

Question 5. Let M be a non-empty set with metric d. Thus, d satisfies the three metric properties. Let
k > 0 and consider the new distance function d′ given by

d′(x, y) = k · d(x, y).

Show that d′ is also a metric on M by showing it satisfies the three metric properties.

Solution 5. First, we show that d′ is positive definite. Since d is positive definite, then d(x, y) ≥ 0 for all
x, y ∈M . Multiplying by k > 0, we get that

d′(x, y) = k · d(x, y) ≥ 0.

Since k ≥ 0 and d(x, y) = 0 if and only if x = y, then d′(x, y) = k · d(x, y) = 0 if and only if x = y.
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Next, we show that d′ is symmetric. Since d is symmetric, we have that d(x, y) = d(y, x). Thus,

d′(x, y) = k · d(x, y) = k · d(y, x) = d′(y, x).

Last, we show that d′ satisfies the triangle inequality. Since d is a metric, it satisfies a triangle inequality.
So,

d(x, z) ≤ d(x, y) + d(y, z).

Since k > 0, we can multiply through to get

d′(x, z) = k · d(x, z) ≤ k · d(x, y) + k · d(y, z) = d′(x, y) + d′(y, z).

Satisfying all three metric properties, we have that d′ is a metric on M .

Question 6. Let M be a non-empty set with two metrics d1 and d2. Thus, d1 and d2 both satisfy the three
metric properties. Consider the new distance function d′ given by

d′(x, y) = d1(x, y) + d2(x, y).

Show that d′ is also a metric on M by showing that it satisfies the three metric properties.

Solution 6. First, we show that d′ is non-negative. Since d1(x, y), d2(x, y) ≥ 0, then the sum of two
non-negative numbers is non-negative. So,

d′(x, y) = d1(x, y) + d2(x, y) ≥ 0.

Since d1 and d2 are individually metrics, they have the property that d1(x, y) = d2(x, y) = 0 if and only if
x = y. Thus, if x = y, then

d′(x, y) = d′(x, x) = d1(x, x) + d2(x, x) = 0.

Conversely, if d′(x, y) = 0, then d1(x, y) + d2(x, y) = 0. Since each term is non-negative, the only way for
this to occur is if both d1 and d2 are zero. However, this occurs if and only if x = y.

Next, we will show d′ is symmetric. Since both d1 and d2 are symmetric, then d1(x, y) = d1(y, x) and
d2(x, y) = d2(y, x). Thus,

d′(x, y) = d1(x, y) + d2(x, y) = d1(y, x) + d2(y, x) = d′(y, x).

Lastly, we show the triangle inequality holds for d′. Since it holds for d1 and d2, we have that the following
two inequalities hold:

d1(x, z) ≤ d1(x, y) + d1(y, z)

d2(x, z) ≤ d2(x, y) + d2(y, z).

Adding the two inequalities, we get that

d′(x, z) = d1(x, z) + d2(x, z) ≤ d1(x, y) + d1(y, z) + d2(x, y) + d2(y, z) = d′(x, y) + d′(y, z).

Thus the triangle inequality holds.
Satisfying all three metric properties, we have that d′ is a metric on M .
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