Math 431 - Real Analysis I
 Solutions to Homework due November 21

Question 1. The following questions use the ever-important Mean Value Theorem.
(a) Let $f(x)$ be any quadratic polynomial $f(x)=\alpha x^{2}+\beta x+\gamma$. Consider the secant line joining the points $\left(t_{1}, f\left(t_{1}\right)\right)$ and $\left(t_{2}, f\left(t_{2}\right)\right)$. What is the slope of this secant line (in terms of α, β, γ, and $\left.t_{i}\right)$? Simplify as much as possible.
(b) For the f in (a), the Mean Value Theorem guarantees the existence of some $c \in\left(t_{1}, t_{2}\right)$ such that $f^{\prime}(c)$ is equal to the above slope. For this particular f, what is this point c ?
(c) Use the Mean Value Theorem to deduce the following inequality for all x, y :

$$
|\sin y-\sin x| \leq|y-x|
$$

Solution 1.

(a) The slope of the second line joining these points is given by

$$
\begin{aligned}
\frac{f\left(t_{1}\right)-f\left(t_{2}\right)}{t_{1}-t_{2}}= & \frac{\alpha t_{1}^{2}+\beta t_{1}+\gamma-\left(\alpha t_{2}^{2}+\beta t_{2}+\gamma\right)}{t_{1}-t_{2}}=\frac{\alpha\left(t_{1}^{2}-t_{2}^{2}\right)+\beta\left(t_{1}-t_{2}\right)}{t_{1}-t_{2}}= \\
& \frac{\left(t_{1}-t_{2}\right)\left[\alpha\left(t_{1}+t_{2}\right)+\beta\right]}{t_{1}-t_{2}}=\alpha\left(t_{1}+t_{2}\right)+\beta
\end{aligned}
$$

(b) Taking the derivative, we have that

$$
f^{\prime}(x)=2 \alpha x+\beta
$$

This will equal our mean slope when

$$
2 \alpha x+\beta=\alpha\left(t_{1}+t_{2}\right)+\beta
$$

which occurs when $x=\frac{t_{1}+t_{2}}{2}$, the midpoint of t_{1} and t_{2}.
(c) Consider $f(x)=\sin x$. For any $x<y \in \mathbb{R}$, we have that there exists some c such tath $x<c<y$ such that

$$
f^{\prime}(c)=\frac{\sin y-\sin x}{y-x}
$$

Since the derivative of $\sin x$ is $\cos x$, then $\left|f^{\prime}(c)\right| \leq 1$. Thus, we have that

$$
\left|\frac{\sin y-\sin x}{y-x}\right| \leq 1
$$

Cross-multiplying, we get that $|\sin y-\sin x| \leq|y-x|$.

Question 2. Let f be a function that is continuous on $[a, b]$ and second differentiable (i.e., $f^{\prime \prime}$ exists) on (a, b). Assume that the line segment joining the points $A=(a, f(a))$ and $B=(b, f(b))$ intersect the graph of f in a third point different from A and B. Show that $f^{\prime \prime}(c)=0$ for some $c \in(a, b)$.

Solution 2. We will use the MVT thrice. First, label the point where the secant line intersect the graph as $D=(d, f(d))$. Then, notice that the slope of the secant line from A to B is the same as the slope of the secant line from A to D and from D to B. Thus,

$$
\frac{f(b)-f(a)}{b-a}=\frac{f(d)-f(a)}{d-a}=\frac{f(b)-f(d)}{b-d}
$$

Using the MVT on $[a, d]$, we get that there exists some $\alpha \in(a, d)$ such that

$$
f^{\prime}(\alpha)=\frac{f(d)-f(a)}{d-a}
$$

Similarly, using the MVT on $[d, b]$, there exists some $\beta \in[d, b]$ such that

$$
f^{\prime}(\beta)=\frac{f(d)-f(b)}{d-b}
$$

Because these two secant slopes are equal, we have that

$$
f^{\prime}(\alpha)=f^{\prime}(\beta)
$$

Now, we can use MVT on the interval $[\alpha, \beta]$ with the differentiable function $f^{\prime}(x)$. Doing so, we get that there exists some $c \in[\alpha, \beta]$ such that

$$
f^{\prime \prime}(c)=\frac{f^{\prime}(\alpha)-f^{\prime}(\beta)}{\alpha-\beta}=0
$$

Thus, $f^{\prime \prime}(c)=0$ as desired.

Question 3. Let f and g be differentiable functions. Show that if $f^{\prime}(x)=g^{\prime}(x)$ for all x, then $f(x)=g(x)+k$ where $k \in \mathbb{R}$.

Solution 3. Consider the function $f(x)-g(x)$, which is also differentiable. Notice that its derivative is $f^{\prime}(x)-g^{\prime}(x)=0$. Thus, by a theorem in class, $f(x)-g(x)$ is constant. So, $f(x)-g(x)=k$ for some $k \in \mathbb{R}$. Thus, $f(x)=g(x)+k$.

Question 4. The hypotheses of the Mean Value Theorem are each quite important. They state that f must be continuous on $[a, b]$ and differentiable on (a, b).
(a) Find a counterexample to the MVT if the hypothesis " f is differentiable on (a, b) " is dropped. To do this, find a function that is continuous on $[a, b]$ but not differentiable on (a, b) where

$$
f^{\prime}(c) \neq \frac{f(b)-f(a)}{b-a}
$$

for all c.
(b) Find a counterexample to the MVT if the hypothesis " f is continuous on $[a, b]$ " is dropped. To do this, find a function that is not continuous on all of $[a, b]$ but f is differentiable on (a, b) where

$$
f^{\prime}(c) \neq \frac{f(b)-f(a)}{b-a}
$$

for all c.

Solution 4.

(a) Consider the function $f(x)=|x|$, which is continuous on the closed interval $[-1,1]$, but is not differentiable at 0 . Notice that

$$
\frac{f(-1)-f(1)}{-1-1}=0
$$

However, at any $c \in[-1,1]$ where f^{\prime} does exists, the derivative is always ± 1, but never 0 .
(b) Consider the function defined on $[0,1]$ given by

$$
f(x)= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { if } 0<x \leq 1\end{cases}
$$

Notice that f is discontinuous only at $x=0$. On $(0,1), f^{\prime}(x)=0$ since it is constant on that open interval. However, the mean slope is given by

$$
\frac{f(1)-f(1)}{1-0}=-1
$$

Thus, there is no c such that $f^{\prime}(c)$ is equal to the mean slope.

Question 5. Let $a, r \in \mathbb{R}$ with $r \neq 1$. Use induction to show that

$$
\sum_{k=0}^{n} a r^{k}=\frac{a-a r^{n+1}}{1-r}
$$

for all $n \geq 0$.
Solution 5. Let $A(n)$ be the statement that

$$
\sum_{k=0}^{n} a r^{k}=\frac{a-a r^{n+1}}{1-r}
$$

We will show that $A(n)$ is true for all $n \geq 0$. For the base case, notice that

$$
\sum_{k=0}^{0} a r^{k}=a r^{0}=a=a \cdot \frac{1-r}{1-r}=\frac{a-a r^{0+1}}{1-r}
$$

Thus, $A(0)$ holds.
Now, assume that $A(n)$ hold for some $n \geq 0$. We will show that $A(n+1)$ also holds. Starting with the left-hand side of the $A(n+1)$ expression, we have that

$$
\begin{gathered}
\sum_{k=0}^{n+1} a r^{k}=\sum_{k=0}^{n} a r^{k}+a r^{n+1}=\frac{a-a r^{n+1}}{1-r}+a r^{n+1}= \\
\frac{a-a r^{n+1}}{1-r}+a r^{n+1} \frac{1-r}{1-r}=\frac{a-a r^{n+1}}{1-r}+\frac{a r^{n+1}-a r^{n+2}}{1-r}=\frac{a-a r^{(n+1)+1}}{1-r} .
\end{gathered}
$$

Thus, $A(n+1)$ is true. So, by induction, $A(n)$ holds for all $n \geq 0$.

Question 6. In this question, we will show that if $|r|<1$, then $r^{n} \rightarrow 0$.
(a) State the binomial theorem. Use it to show that if $b>0$, then $(1+b)^{n}>n b$.
(b) Prove that if $|r|<1$, then $r^{n} \rightarrow 0$ using an $\varepsilon-N$ proof. To do so, it would be wise to note that if $|r|<1$, then

$$
|r|=\frac{1}{1+b}
$$

for some $b>0$.

Solution 6.

(a) The binomial theorem states that

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Thus, for $(1+b)^{n}$, we have that

$$
(1+b)^{n}=1+n b+\binom{n}{2} b^{2}+\cdots+b^{n}
$$

Since $b>0$, all the terms are positive. Thus, the sum is greater than or equal to each individual term and thus $(1+b)^{n}>n b$.
(b) Let $\varepsilon>0$. Since $|r|<1$, then we can write it as

$$
|r|=\frac{1}{1+b}
$$

for some $b>0$. Consider $N=\frac{1}{\varepsilon b}>0$. Assume that $n>\varepsilon=\frac{1}{\varepsilon b}$. Then, we have that

$$
\left|r^{n}-0\right|=|r|^{n}=\frac{1}{(1+b)^{n}}
$$

Since $(1+b)^{n}>n b$, we have that

$$
\frac{1}{(1+b)^{n}}<\frac{1}{n b}
$$

Since $n>\frac{1}{\varepsilon b}$, we have that

$$
\frac{1}{n b}<\varepsilon
$$

Thus, $\left|r^{n}-0\right|<\varepsilon$. So, we have that $r^{n} \rightarrow 0$.

