Math 431 - Real Analysis I
 Homework due November 14

Let S and T be metric spaces. We say that a function $f: S \rightarrow T$ is uniformly continuous on $A \subset S$ if for all $\varepsilon>0$, there exists a $\delta>0$ such that whenever $x, y \in A$ with $d_{S}(x, y)<\delta$, then $d_{T}(f(x), f(y))<\varepsilon$.

Question 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be uniform continuous on a set $A \subset \mathbb{R}$.
(a) Let $k \in \mathbb{R}$. Show that $k \cdot f$ is also continuous on A.
(b) If $g: \mathbb{R} \rightarrow \mathbb{R}$ is also uniformly continuous on A, show that $f+g$ is uniformly continuous on A.
(c) Let $m, b \in \mathbb{R}$. Show that $h(x)=m x+b$ is uniformly continuou on any $A \subset \mathbb{R}$.

Solution 1.

(a) Let $\varepsilon>0$. Since f is uniformly continuous on A, there exists a $\delta>0$ such that for all $x, y \in A$ satisfying $|x-y|<\delta$, then $|f(x)-f(y)|<\frac{\varepsilon}{|k|+1}$. Thus, for all $x, y \in A$ such that $|x-y|<\delta$, we have that

$$
|k \cdot f(x)-k \cdot f(y)|=|k||f(x)-f(y)|<\frac{|k|}{|k|+1} \varepsilon<\varepsilon
$$

Thus, $k \cdot f$ is uniformly continuous on A.
(b) Let $\varepsilon>0$. Since f is uniformly continuous on A, there exists a $\delta_{f}>0$ such that whenever $x, y \in A$ such that $|x-y|<\delta_{f}$, then $|f(x)-f(y)|<\frac{\varepsilon}{2}$. Similarly, since g is uniformly continuous on A, there exists a δ_{g} such that whenever $x, y \in A$ such that $|x-y|<\delta_{g}$, then $|g(x)-g(y)|<\frac{\varepsilon}{2}$. Let $\delta=\min \left\{\delta_{f}, \delta_{g}\right\}$. Then, for all $x, y \in A$ satisfying that $|x-y|<\delta$, we have that

$$
|f(x)+g(x)-(f(y)+g(y))| \leq|f(x)-f(y)|+|g(x)-g(y)|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

Thus, $f+g$ is uniformly continuous on A.
(c) Let $\varepsilon>0$. Let $\delta=\frac{\varepsilon}{|m|+1}>0$. Let $x, y \in A$ such that $|x-y|<\delta$, we have that

$$
|f(x)-f(y)|=|(m x+b)-(m y+b)|=|m x-m y|=|m||x-y|<\frac{|m|}{|m|+1} \varepsilon<\varepsilon
$$

Thus, f is uniformly continuous on any A.

Question 2. Show that the function $f(x)=x^{n}$ uniformly continuous on $[-1,1]$ for all $n \in \mathbb{Z}_{+}$. To do so, it may be helpful to remember that we previously proved that

$$
x^{n}-y^{n}=(x-y) \sum_{k=0}^{n-1} x^{k} y^{n-1-k}
$$

Solution 2. Let $\varepsilon>0$. Let $\delta=\frac{\varepsilon}{n}>0$. Let $x, y \in[0,1]$ such that $|x-y|<\delta=\frac{\varepsilon}{n}$. For these x, y, we have that

$$
|f(x)-f(y)|=\left|x^{n}-y^{n}\right|=\left|(x-y) \sum_{k=0}^{n-1} x^{k} y^{n-1-k}\right|=|(x-y)|\left|\sum_{k=0}^{n-1} x^{k} y^{n-1-k}\right| \leq
$$

$$
|x-y| \sum_{k=0}^{n-1}\left|x^{k} y^{n-1-k}\right|=|x-y| \sum_{k=0}^{n-1}|x|^{k}|y|^{n-1-k}
$$

Since $x, y \in[0,1]$, we have that $|x|,|y| \leq 1$. Thus,

$$
\sum_{k=0}^{n-1}|x|^{k}|y|^{n-1-k} \leq \sum_{k=0}^{n-1} 1 \cdot 1=n
$$

Continuing our computation, we have that

$$
|x-y| \sum_{k=0}^{n-1}|x|^{k}|y|^{n-1-k} \leq|x-y| \cdot n<\frac{\varepsilon}{n} \cdot n=\varepsilon .
$$

Thus, for any $x, y \in[0,1]$ satisfying $|x-y|<\delta$, we have that $|f(x)-f(y)|<\varepsilon$.
In class, we gave the definition of the derivative of a function at a point. If f is a real function defined on some open interval (a, b) such that $c \in(a, b)$, then we say f is differentiable at c of the following limit exists:

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} .
$$

If this limit exists, then we denote it by $f^{\prime}(c)$ as call it the derivative of f at c.
Question 3. Use the limit definition to compute the derivative of

$$
f(x)=\frac{3 x+4}{2 x-1}
$$

at every $c \neq 1 / 2$.
Solution 3. Computing, we have

$$
\begin{gathered}
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c} \frac{\frac{3 x+4}{2 x-1}-\frac{3 c+4}{2 c-1}}{x-c}= \\
\lim _{x \rightarrow c} \frac{\frac{(3 x+4)(2 c-1)-(3 c+4)(2 x-1)}{(2 x-1)(2 c-1)}}{x-c}=\lim _{x \rightarrow c} \frac{\frac{5(x-c)}{(2 x-1)(2 c-1)}}{x-c}= \\
\lim _{x \rightarrow c} \frac{5}{(2 x-1)(2 c-1)}=\frac{5}{2 c-1} .
\end{gathered}
$$

Question 4. Consider the function

$$
f(x)= \begin{cases}0 & \text { if } x \leq 0 \\ x^{2} & \text { if } x>0\end{cases}
$$

Show that f is differentiable at 0 by showing that $f^{\prime}(0)=0$. To do so, you will have to use the limit definition of the derivative, which will include an $\varepsilon-\delta$ proof.

Solution 4. We will show that $f^{\prime}(0)=0$ by showing that

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0
$$

Since $f(0)=0$, this is equivalent to showing that $\lim _{x \rightarrow 0} \frac{f(x)}{x}=0$. Let $\varepsilon>0$. Choose $\delta=\varepsilon>0$. We will show that whenever $0<|x-0|<\delta$, then $\left|\frac{f(x)}{x}-0\right|<\varepsilon$. We consider the following two cases: $x<0$ or $x>0$. If $x<0$, then $f(x)=0$. Thus, $\left|\frac{f(x)}{x}-f(0)\right|=|0-0|<\varepsilon$. If $x>0$, then $f(x)=x^{2}$. Thus,

$$
\left|\frac{f(x)}{x}-0\right|=\left|\frac{x^{2}}{x}-0\right|=|x-0|<\delta=\varepsilon
$$

Thus,

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0
$$

and thus $f^{\prime}(0)=0$.
Question 5. In this question, we will prove the quotient rule using the product rule and the chain rule.
(a) Use the definition of the derivative to show that if $f(x)=\frac{1}{x}$, then

$$
f^{\prime}(a)=\frac{-1}{a^{2}}
$$

(b) Use (a), the product rule, and the chain rule to prove the quotient rule.

Solution 5.

(a) Computing the derivative, we have

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{\frac{1}{x}-\frac{1}{a}}{x-a}=\lim _{x \rightarrow a} \frac{\frac{a-x}{x a}}{x-a}=\lim _{x \rightarrow a} \frac{-1}{x a}=-\frac{1}{a^{2}} .
$$

(b) Consider the quotient $\frac{f(x)}{g(x)}$, which we will write as

$$
f(x) \cdot[g(x)]^{-1}
$$

By the chain rule and (a), we have that the derivative of $[g(x)]^{-1}$ is $-\frac{g^{\prime}(a)}{g^{2}(a)}$. Thus, by the product rule, we have that

$$
\begin{gathered}
\left(\frac{f}{g}\right)^{\prime}(a)=\left(f(x) \cdot[g(x)]^{-1}\right)^{\prime}(a)=f^{\prime}(a)[g(a)]^{-1}+f(a) \cdot \frac{-g^{\prime}(a)}{g^{2}(a)}= \\
\frac{f(a) g^{\prime}(a)-f(a) g^{\prime}(a)}{g^{2}(a)}
\end{gathered}
$$

Question 6.

(a) Consider the function

$$
f(x)= \begin{cases}\sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Show that f is not differentiable at $x=0$. [Hint: Differentiable implies continuous]
(b) Consider the function

$$
g(x)= \begin{cases}x^{2} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Show that g is differentiable at 0 at that $g^{\prime}(0)=0$.

Solution 5.

(a) Consider the sequence $x_{n}=\frac{1}{\pi / 2+2 \pi n}$. Notice that $x_{n} \rightarrow 0$. However,

$$
f\left(x_{n}\right)=\sin (\pi / 2+2 \pi n)=1 \rightarrow 1 \neq 0=f(0) .
$$

Thus, f is not continuous at 0 and is therefore non-differentiable at 0 .
(b) We will show that

$$
\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0}=0
$$

Notice that $g(x)=0$ and when $x \neq 0, g(x)=x^{2} \sin (1 / x)$. Thus, we wish to show that

$$
\lim _{x \rightarrow 0} \frac{x^{2} \sin (1 / x)}{x}=\lim _{x \rightarrow 0} x \sin (1 / x)=0
$$

Let $\varepsilon>0$. Set $\delta=\varepsilon$. Then, assume that x satisfies that $0<|x-0|<\delta=\varepsilon$. Then,

$$
|x \sin (1 / x)-0|=|x||\sin (1 / x)| \leq|x|<\delta=\varepsilon
$$

Thus, $g^{\prime}(0)=0$.

