
Math 431 - Real Analysis I
Homework due November 14

Let S and T be metric spaces. We say that a function f : S → T is uniformly continuous on A ⊂ S if for all
ε > 0, there exists a δ > 0 such that whenever x, y ∈ A with dS(x, y) < δ, then dT (f(x), f(y)) < ε.

Question 1. Let f : R→ R be uniform continuous on a set A ⊂ R.

(a) Let k ∈ R. Show that k · f is also continuous on A.

(b) If g : R→ R is also uniformly continuous on A, show that f + g is uniformly continuous on A.

(c) Let m, b ∈ R. Show that h(x) = mx+ b is uniformly continuou on any A ⊂ R.

Solution 1.

(a) Let ε > 0. Since f is uniformly continuous on A, there exists a δ > 0 such that for all x, y ∈ A satisfying
|x− y| < δ, then |f(x)− f(y)| < ε

|k|+1 . Thus, for all x, y ∈ A such that |x− y| < δ, we have that

|k · f(x)− k · f(y)| = |k||f(x)− f(y)| < |k|
|k|+ 1

ε < ε.

Thus, k · f is uniformly continuous on A.

(b) Let ε > 0. Since f is uniformly continuous on A, there exists a δf > 0 such that whenever x, y ∈ A such

that |x − y| < δf , then |f(x) − f(y)| < ε

2
. Similarly, since g is uniformly continuous on A, there exists

a δg such that whenever x, y ∈ A such that |x − y| < δg, then |g(x) − g(y)| < ε

2
. Let δ = min{δf , δg}.

Then, for all x, y ∈ A satisfying that |x− y| < δ, we have that

|f(x) + g(x)− (f(y) + g(y))| ≤ |f(x)− f(y)|+ |g(x)− g(y)| < ε

2
+
ε

2
= ε.

Thus, f + g is uniformly continuous on A.

(c) Let ε > 0. Let δ =
ε

|m|+ 1
> 0. Let x, y ∈ A such that |x− y| < δ, we have that

|f(x)− f(y)| = |(mx+ b)− (my + b)| = |mx−my| = |m||x− y| < |m|
|m|+ 1

ε < ε.

Thus, f is uniformly continuous on any A.

Question 2. Show that the function f(x) = xn uniformly continuous on [−1, 1] for all n ∈ Z+. To do so, it
may be helpful to remember that we previously proved that

xn − yn = (x− y)

n−1∑
k=0

xkyn−1−k.

Solution 2. Let ε > 0. Let δ =
ε

n
> 0. Let x, y ∈ [0, 1] such that |x− y| < δ =

ε

n
. For these x, y, we have

that

|f(x)− f(y)| = |xn − yn| =

∣∣∣∣∣(x− y)

n−1∑
k=0

xkyn−1−k

∣∣∣∣∣ = |(x− y)|

∣∣∣∣∣
n−1∑
k=0

xkyn−1−k

∣∣∣∣∣ ≤
1



|x− y|
n−1∑
k=0

|xkyn−1−k| = |x− y|
n−1∑
k=0

|x|k|y|n−1−k.

Since x, y ∈ [0, 1], we have that |x|, |y| ≤ 1. Thus,

n−1∑
k=0

|x|k|y|n−1−k ≤
n−1∑
k=0

1 · 1 = n.

Continuing our computation, we have that

|x− y|
n−1∑
k=0

|x|k|y|n−1−k ≤ |x− y| · n < ε

n
· n = ε.

Thus, for any x, y ∈ [0, 1] satisfying |x− y| < δ, we have that |f(x)− f(y)| < ε.
In class, we gave the definition of the derivative of a function at a point. If f is a real function defined on
some open interval (a, b) such that c ∈ (a, b), then we say f is differentiable at c of the following limit exists:

lim
x→c

f(x)− f(c)

x− c
.

If this limit exists, then we denote it by f ′(c) as call it the derivative of f at c.

Question 3. Use the limit definition to compute the derivative of

f(x) =
3x+ 4

2x− 1

at every c 6= 1/2.

Solution 3. Computing, we have

f ′(c) = lim
x→c

f(x)− f(c)

x− c
= lim

x→c

3x+4
2x−1 −

3c+4
2c−1

x− c
=

lim
x→c

(3x+4)(2c−1)−(3c+4)(2x−1)
(2x−1)(2c−1)

x− c
= lim

x→c

5(x−c)
(2x−1)(2c−1)

x− c
=

lim
x→c

5

(2x− 1)(2c− 1)
=

5

2c− 1
.

Question 4. Consider the function

f(x) =

{
0 if x ≤ 0
x2 if x > 0

Show that f is differentiable at 0 by showing that f ′(0) = 0. To do so, you will have to use the limit definition
of the derivative, which will include an ε−δ proof.

Solution 4. We will show that f ′(0) = 0 by showing that

lim
x→0

f(x)− f(0)

x− 0
= 0.

Since f(0) = 0, this is equivalent to showing that limx→0
f(x)
x = 0. Let ε > 0. Choose δ = ε > 0. We will

show that whenever 0 < |x − 0| < δ, then
∣∣∣ f(x)x − 0

∣∣∣ < ε. We consider the following two cases: x < 0 or

x > 0. If x < 0, then f(x) = 0. Thus,
∣∣∣ f(x)x − f(0)

∣∣∣ = |0− 0| < ε. If x > 0, then f(x) = x2. Thus,∣∣∣∣f(x)

x
− 0

∣∣∣∣ =

∣∣∣∣x2x − 0

∣∣∣∣ = |x− 0| < δ = ε.
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Thus,

lim
x→0

f(x)− f(0)

x− 0
= 0

and thus f ′(0) = 0.
Question 5. In this question, we will prove the quotient rule using the product rule and the chain rule.

(a) Use the definition of the derivative to show that if f(x) =
1

x
, then

f ′(a) =
−1

a2
.

(b) Use (a), the product rule, and the chain rule to prove the quotient rule.

Solution 5.

(a) Computing the derivative, we have

f ′(a) = lim
x→a

1
x −

1
a

x− a
= lim

x→a

a−x
xa

x− a
= lim

x→a

−1

xa
= − 1

a2
.

(b) Consider the quotient
f(x)

g(x)
, which we will write as

f(x) · [g(x)]−1.

By the chain rule and (a), we have that the derivative of [g(x)]−1 is − g
′(a)

g2(a)
. Thus, by the product rule,

we have that (
f

g

)′
(a) =

(
f(x) · [g(x)]−1

)′
(a) = f ′(a)[g(a)]−1 + f(a) · −g

′(a)

g2(a)
=

f(a)g′(a)− f(a)g′(a)

g2(a)
.

Question 6.

(a) Consider the function

f(x) =

{
sin (1/x) if x 6= 0
0 if x = 0

Show that f is not differentiable at x = 0. [Hint: Differentiable implies continuous]

(b) Consider the function

g(x) =

{
x2 sin (1/x) if x 6= 0
0 if x = 0

Show that g is differentiable at 0 at that g′(0) = 0.

Solution 5.

(a) Consider the sequence xn =
1

π/2 + 2πn
. Notice that xn → 0. However,

f(xn) = sin(π/2 + 2πn) = 1→ 1 6= 0 = f(0).

Thus, f is not continuous at 0 and is therefore non-differentiable at 0.
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(b) We will show that

lim
x→0

g(x)− g(0)

x− 0
= 0.

Notice that g(x) = 0 and when x 6= 0, g(x) = x2 sin(1/x). Thus, we wish to show that

lim
x→0

x2 sin(1/x)

x
= lim

x→0
x sin(1/x) = 0.

Let ε > 0. Set δ = ε. Then, assume that x satisfies that 0 < |x− 0| < δ = ε. Then,

|x sin(1/x)− 0| = |x|| sin(1/x)| ≤ |x| < δ = ε.

Thus, g′(0) = 0.
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