
Math 431 - Real Analysis
Solutions to Homework due August 27

Question 1. Use the nine axioms introduced in class to prove the following. Be sure to cite which axioms
you are proving. In what follows, let a, b, c ∈ R.

(a) a > 0 if and only if −a < 0.

(b) −1 < 0

(c) a > 0 if and only if a−1 > 0.

(d) If a > 0 and b < 0, then a · b < 0.

(e) If a < b and c < 0, then c · a > c · b.

Solution 1.

(a) For any a ∈ R, Axiom 4 guarantees the existence of −a ∈ R such that a+ (−a) = 0. Assume that 0 < a.
By Axiom 7, we have that −a = 0 + (−a) < a + (−a) = 0. Thus, −a < 0. Conversely, if −a < 0, then
again by Axiom 7, we have that 0 = (−a) + a < 0 + a = a. Thus, 0 < a. Therefore, a > 0 if and only if
−a < 0.

(b) Notice that −1 6= 0. Assume, to the contrary, that −1 > 0. Then, by 1a, 1 < 0, which is not true
(proven in class). By Axiom 6, the only possibility is that −1 < 0.

(c) First, we will show that if a > 0, then a−1 > 0. Assume, to the contrary, that a−1 ≤ 0. First note that
a−1 6= 0 since, if it were, then 1 = a · a−1 = a · 0 = 0, a contradiction. Thus, we are left to assume that
a−1 < 0. By 1a, we know that −a−1 > 0. Since a > 0 and −a−1 > 0, then Axiom 8 gives us that

−1 = a · (−a−1) > 0,

a contradiction.

Next, we show that if a−1 > 0, then a > 0. As before, assume, to the contrary, that a ≤ 0. Again, a 6= 0
since, if it were, then 1 = a−1 · a = a−1 · 0 = 0, a contradiction. Thus, we are left to assume that a < 0.
By 1a, we have that −a > 0 and thus, by Axiom 8,

−1 = (−a) · a−1 > 0,

a contradiction.

(d) If b < 0, then by 1a, we know that 0 < −b. Since a > 0 and −b > 0, then by Axiom 8, −ab = a ·(−b) > 0.
By Axiom 7, we get that

0 = −ab + ab > ab.

Thus, ab < 0.

(e) Since a < b, by Axiom 7, we have that

0 = a + (−a) < b + (−a) = b− a.

By 1d, since b− a > 0 and c < 0, then c(b− a) < 0. By Axiom 3, this is equivalent to cb− ca < 0. By
Axiom 7, we get that

cb = cb− ca + ca < 0 + ca = ca.

Thus, cb < ca.
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Question 2. Let n ∈ Z and x, y ∈ R and consider the following expression:

(x− y)

n−1∑
k=0

xkyn−1−k.

(a) For n = 1, 2, 3, evaluate the above expression and expand & simplify as much as possible.

(b) Using your observations from (a), conjecture a general pattern.

(c) Prove your conjectured pattern from (b).

Solution 2.

(a) For n = 1, our sum yield only 1 and thus our expression is x− y.

For n = 2, we have
(x− y)(y + x) = xy + x2 − y2 − xy = x2 − y2.

For n = 3, we have

(x− y)(y2 + xy + x2) = xy2 + x2y + x3 − y3 − xy2 − x2y = x3 − y3.

(b) In general, we conjecture that

(x− y)

n−1∑
k=0

xkyn−1−k = xn − yn.

(c) We prove our conjectured expression by expanding the left hand side. Doing so yields

(x− y)

n−1∑
k=0

xkyn−1−k = x

n−1∑
k=0

xkyn−1−k − y

n−1∑
k=0

xkyn−1−k

=

n−1∑
k=0

xk+1yn−1−k −
n−1∑
k=0

xkyn−k

In our remaining expression, we wish to re-index our first sum to match the entries in the second sum.
To do so, we replace k + 1 with j. This yield the new sum

n∑
j=1

xjyn−j .

Thus, we have

(x− y)

n−1∑
k=0

xkyn−1−k =

n∑
j=1

xjyn−j −
n−1∑
k=0

xkyn−k.

Notice that the first and second sums now have the same entries, except that the starting and ending
values of the indices differ. Thus, most terms will cancel, except for the one corresponding to j = n in
the first sum and k = 0 in the second sum; these correspond to the terms xn and yn, respectively. Thus,
we obtain our desired result:

(x− y)

n−1∑
k=0

xkyn−1−k = xn − yn.
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Question 3. Show that if 2n − 1 is prime, then n is prime. A prime number of the form 2n − 1 is called a
Mersenne prime. Hint: Prove the contrapositive and use your conjectured equation from 2b in your proof.

Solution 3.
We will instead prove the contrapositive statement: “If n is composite, then 2n − 1 is composite.” Since

n is composite, then n = a · b where 1 < a, b < n. Thus, we have that

2n − 1 = 2ab − 1 = 2a2b − 1.

We can use the equation from 2b:

(x− y)

n−1∑
k=0

xkyn−1−k = xn − yn

with x = 2a, y = 1, and n = b. Doing so yields

2n − 1 = 2(ab) − 1 = (2a)b − 1b

= (2a − 1)

b−1∑
k=0

(2a)k · 1b−1−k

= (2a − 1)

b−1∑
k=0

2ak.

Since a ∈ Z, then 2a − 1 ∈ Z; similarly, since a, b, k ∈ Z, then
∑b−1

k=0 2ak ∈ Z. Also, since a > 1, then

2a − 1 > 1. Lastly, since a, b > 1, then
∑b−1

k=0 2ak > 1. Thus, we have written 2n − 1 as a product of two
positive integers, each greater than 1 and so 2n − 1 is composite.

Having proven the contrapositive, the original statement “if 2n − 1 is prime, then n is prime” is also
true.

Question 4. Show that if 2n + 1 is prime, then n is a power of 2. A prime number of the form 22
m

+ 1 is
called a Fermat prime. Hint: As with (3), prove the contrapositive and use your 2b equation.

Solution 4. We instead prove the contrapositive statement “If n is not a power of 2, then 2n + 1 is
composite.” Since n is not a power of 2, then n is divisible by some prime p 6= 2. Since 2 is the only even odd
number, p is necessarily odd. Thus, we can write n = pr where 1 < r < n. Now, consider 2n + 1 = 2rp + 1.
Since n is odd, then (−1)n = −1. So, using our equation from 2b with x = 2r, y = −1, and n = r, we get:

2rp + 1 = (2r)p − (−1)p

= (2r + 1)

p−1∑
k=0

(2r)
k

(−1)p−1−k

Since 1 < r < n, we have that 1 < 2r + 1 < 2rp + 1.. Furthermore,
∑p−1

k=0 (2r)
k

(−1)p−1−k ∈ Z. Thus,
2n + 1 has a non-trivial divisor and therefore composite.

Having proven the contrapositive, the original statement “if 2n +1 is prime, then n is a power of 2” holds
true as well.
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Question 5. Consider the set

Q =

{
p

q

∣∣∣∣ p, q ∈ Z, q 6= 0

}
.

Define a relation ∼ on Q given by

p1
q1
∼ p2

q2
if and only if p1q2 = p2q1.

Below, we will show that ∼ is an equivalence relation, and therefore be able to define the rational numbers
Q as the set of equivalence classes of elements in Q.

(a) Reflexivity: Show that
p1
q1
∼ p1

q1
.

(b) Symmetry: Show that if
p1
q1
∼ p2

q2
, then

p2
q2
∼ p1

q1
.

(c) Transitivity: Show that if
p1
q1
∼ p2

q2
and

p2
q2
∼ p3

q3
, then

p1
q1
∼ p3

q3
.

Solution 5.

(a) Notice that trivially p1q1 = p1q1; thus,
p1
q1
∼ p1

q1
.

(b) Assume that
p1
q1
∼ p2

q2
. Then, p1q2 = p2q1.. This is, of course, equivalent to p2q1 = p1q2. Thus,

p2
q2

=
p1
q1

.

(c) Assume that
p1
q1
∼ p2

q2
and

p2
q2
∼ p3

q3
. Then, p1q2 = p2q1 and p2q3 = p3q2. Multiplying the first equation

by q3, we get
q3p1q2 = q3p2q1.

Using the second equality, we can substitute into p2q3 to get

q3p1q2 = (q3p2)q1 = p3q2q1.

Thus, since q3p1q2 = p3q2q1 and q2 6= 0, we can multiply through by q−1
2 to get p1q3 = p3q1, as desired.

Thus,
p1
q1
∼ p3

q3
.
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