Math 431 - Real Analysis I Final Review Sheet

LOGISTICS: Our test will occur on Wednesday, December 12. It will be a 120 minute, no notes, no calculator test. Please bring blank paper on which you will write your solutions.

The successful test-taker will have mastered the following concepts.

UNIFORM CONTINUITY

- · Use the $\varepsilon \delta$ definition to show that a function is uniformly continuous on a given set.
- · Understand how you can combine uniformly continuous functions to create new uniformly continuous functions (like scaling a uniformly continuous function, adding uniformly continuous functions, etc).
- · Understand why any uniformly continuous function on A is also continuous on A.
- · Use the fact that a continuous function on a compact set A is uniformly continuous on A.

DEFINITION OF THE DERIVATIVE

- · Use the definition of the derivative to compute the derivative of a function
- · Prove a function is or is not differentiable at a point or on a set
- · Understand the relationship between continuity and differentiability

MEAN VALUE THEOREM

- · Understand the importance of the various hypotheses in the Mean Value Theorem
- · Use the Mean Value Theorem to prove statements about derivatives
- · Verify that the Mean Value Theorem is true for various specific examples of functions and intervals

SERIES

- · Understand the definition of convergence and divergence of a series
- · Use the definition of convergence (with partial sums) to prove that a series does or does not converge
- · Understand how the Cauchy condition is equivalent to the convergence of a series
- · Know how to use the Divergence Theorem to prove that a series divergs

Comparison Tests

- · Understand the Comparison Theorem (and Generalized Comparison Theorem) and how to use it to prove that certain series converge or diverge
- · Understand how to prove the Limit Comparison Test using the Comparison Test
- · Use the Comparison Test and known convergent/divergent series to quickly show a series converges/diverges.

Integral Tests

· Use the Alternating Series Test to prove that a series converges

- · Use the Integral Test to prove that a series converges/diverges
- \cdot Use the *p*-series Test to prove that a series converges/diverges
- · Use the Ratio Test to prove that a series converges/diverges
- · Use the Root Test to prove that a series converges/diverges

Absolute and Conditional Convergence

- · Provide examples of absolute and conditionally convergent series
- \cdot Understand the relationship between convergence, absolute convergence, conditional convergence, and divergence.