Math 431 - Real Analysis Homework due September 5

Question 1. Let $a, b \in \mathbb{R}$.
(a) Show that if $a+b$ is rational, then a is rational or b is irrational.
(b) Use (a) to show that if $a+b$ is rational, then a and b are both rational or both irrational.

In class on Monday, we learned of boundedness, the supremum/infimum, and the Completeness Axiom. Given a bounded set $S \subset \mathbb{R}$, a number b is called a supremum or least upper bound for S if the following hold:
(i) b is an upper bound for S, and
(ii) if c is an upper bound for S, then $b \leq c$.

Similarly, given a bounded set $S \subset \mathbb{R}$, a number b is called an infimum or greatest lower bound for S if the following hold:
(i) b is a lower bound for S, and
(ii) if c is a lower bound for S, then $c \leq b$.

If b is a supremum for S, we write that $b=\sup S$. If it is an infimum, we write that $b=\inf S$.
We were also introduced to our tenth and final axiom, the Completeness Axiom. This axiom states that any non-empty set $S \subset \mathbb{R}$ that is bounded above has a supremum; in other words, if S is a non-empty set of real numbers that is bounded above, there exists a $b \in \mathbb{R}$ such that $b=\sup S$.

Question 2. Show that if a set $S \subset \mathbb{R}$ has a supremum, then it is unique. Thus, we can talk about the supremum of a set, instead of the a supremum of a set.

Question 3. Let S be a non-empty subset of \mathbb{R}.
(a) Let $-S=\{-x \in \mathbb{R} \mid x \in S\}$. Show that S has a supremum b if and only if $-S$ has an infimum $-b$.
(b) Use (a) to show that if T is a non-empty set that is bounded below, then T has an infimum.

Question 4. Prove the following Comparison Theorem: Let $S, T \subset \mathbb{R}$ be non-empty sets such that $s \leq t$ for every $s \in S$ and $t \in T$. If T has a supremum, then so does S and,

$$
\sup S \leq \sup T
$$

Question 5. Consider the set

$$
S=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{Z}_{+}\right\}
$$

(a) Show that $\max S=1$.
(b) Show that if d is a lower bound for S, then $d \leq 0$. [Hint: A proof by contradiction might be helpful, as well as the Archimedean Property.]
(c) Use (b) to show that $0=\inf S$.

Question 6. Consider the set

$$
T=\left\{\left.(-1)^{n}\left(1-\frac{1}{n}\right) \right\rvert\, n \in \mathbb{Z}_{+}\right\}
$$

(a) Show that 1 is an upper bound for T.
(b) Similar to 5 b , show that if d is an upper bound for T, then $d \geq 1$.
(c) Use (a) and (b) to show that $\sup T=1$.

