
Math 431 - Real Analysis
Homework due September 17

In class, we learned of the famous Cauchy-Schwarz Inequality. Given two n-vectors x,y ∈ Rn, Cauchy-
Schwarz relates its dot product with the norms of the individual vectors:

(x · y)
2 ≤ ‖x‖2 ‖y‖2.

Written component-wise with

x = (x1, x2, . . . , xn) and y = (y1, y2, · · · , yn),

the Cauchy-Schwarz inequality is (
n∑

k=1

xkyk

)2

≤

(
n∑

k=1

x2
k

) (
n∑

k=1

y2k

)
.

Question 1. Many times, the Cauchy-Schwarz Inequality can be used to obtain some interesting inequalities
by simply choosing an appropriate vector x and y.

(a) Let a, b, c ∈ R. Show that
(a + b + c)2 ≤ 3(a2 + b2 + c2).

(b) Let a, b, c ∈ R+. Show that

(a + b + c)

(
1

a
+

1

b
+

1

c

)
≥ 9.

(c) Let a1, a2, · · · an ∈ R. Show the Sum of Squares inequality:(
1

n

n∑
k=1

ak

)2

≤ 1

n

n∑
k=1

a2k.

In class on Friday, we learned of several new definitions that will help us to describe the topology of Rn.
The first was an open ball of radius r about x, which was given by

B(x; r) = {y ∈ Rn | ‖y − x‖ < r}.

If S ⊂ Rn, a point x is called an interior point of S if there exists an ε > 0 such that B(x; ε) ⊂ S. The set
of all interior points of S is denoted by int S, and it is always true that int S ⊂ S.

If S = int S, then we say that S is an open set. In other words, S is open if and only if for every x ∈ S,
there exists an ε > 0 such that B(x; ε) ⊂ S.

Question 2. It is often easier to prove that a given set S is not open. To do so, one needs to find a point
x ∈ S such that for no r > 0, B(x; r) ⊂ S. In other words, one needs to find a x ∈ S such that for all r > 0,
there exists some y ∈ B(x; r) such that y ∈ B(x; r) but y 6∈ S. Show that the following subsets S ⊂ Rn are
not open.

(a) {a} ⊂ R

(b) {(x, 0) ∈ R2 |x ∈ R} ⊂ R2

(c) {(x, y) ∈ R2 |x ≥ 0 and y ≥ 0} ⊂ R2
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Question 3. In what follows, we will demonstrate an important topological property of Q ⊂ R.

(a) Let a ∈ Q. Show that a +
√
2

n is irrational for all n ∈ Z+.

(b) Use (a) to show that Q is not an open subset of R.

Given a set S ⊂ Rn, a point x ∈ S is called an isolated point of S if there exists an ε > 0 such that
B(x; ε) ∩ S = {x}. In other words, x is isolated in S if there is a small enough ε > 0 such that B(x; ε)
intersects S only at x itself. A set S is called discrete if every point in S is isolated.

Question 4. Show that the following sets are or are not discrete.

(a) Show that Z is a discrete subset of R.

(b) Show that ever finite subset of R is a discrete subset of R.

(c) Show that S =
{

1
n

∣∣n ∈ Z+

}
is a discrete subset of R

(d) Show that T =
{

1
n

∣∣n ∈ Z+

}
∪ {0} is not a discrete subset of R.

Question 5. Let U, V ∈ R be open sets. Consider the product set

U × V = {(x, y) |x ∈ U, y ∈ V } ⊂ R2.

Show that U × V is open by showing that each (x, y) ∈ U × V is an interior point.

Question 6. Consider the set
T = {x ∈ R2 | ‖x‖ < 1}.

Geometrically, this set is just an “open disk” of radius 1 about the origin. Consider

S1 = {x ∈ R2 | ‖x‖ = 1}.

Geometrically, S1 is the circle of radius 1 about the origin. We will show that every point in S1 is an
accumulation point of T (and therefore an adherent point of T ).

As a hint, you may want to follow something similar to the below outline:

Let x ∈ S1. We will show that for all ε > 0, B(x; ε)∩ (T − {x}) 6= ∅. First, note that T − {x} = T since
x 6∈ T . Thus, we wish to show that B(x; ε) ∩ T 6= ∅. Then, consider the 2 cases: ε > 1 or 0 < ε ≤ 1. In the

last case, it might be wise to consider
(

1− ε

2

)
x.
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