Math 431 - Real Analysis
 Homework due September 17

In class, we learned of the famous Cauchy-Schwarz Inequality. Given two n-vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, CauchySchwarz relates its dot product with the norms of the individual vectors:

$$
(\mathbf{x} \cdot \mathbf{y})^{2} \leq\|\mathbf{x}\|^{2}\|\mathbf{y}\|^{2}
$$

Written component-wise with

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { and } \mathbf{y}=\left(y_{1}, y_{2}, \cdots, y_{n}\right)
$$

the Cauchy-Schwarz inequality is

$$
\left(\sum_{k=1}^{n} x_{k} y_{k}\right)^{2} \leq\left(\sum_{k=1}^{n} x_{k}^{2}\right)\left(\sum_{k=1}^{n} y_{k}^{2}\right)
$$

Question 1. Many times, the Cauchy-Schwarz Inequality can be used to obtain some interesting inequalities by simply choosing an appropriate vector \mathbf{x} and \mathbf{y}.
(a) Let $a, b, c \in \mathbb{R}$. Show that

$$
(a+b+c)^{2} \leq 3\left(a^{2}+b^{2}+c^{2}\right)
$$

(b) Let $a, b, c \in \mathbb{R}_{+}$. Show that

$$
(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 9
$$

(c) Let $a_{1}, a_{2}, \cdots a_{n} \in \mathbb{R}$. Show the Sum of Squares inequality:

$$
\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)^{2} \leq \frac{1}{n} \sum_{k=1}^{n} a_{k}^{2}
$$

In class on Friday, we learned of several new definitions that will help us to describe the topology of \mathbb{R}^{n}. The first was an open ball of radius r about \mathbf{x}, which was given by

$$
B(\mathbf{x} ; r)=\left\{\mathbf{y} \in \mathbb{R}^{n} \mid\|\mathbf{y}-\mathbf{x}\|<r\right\} .
$$

If $S \subset \mathbb{R}^{n}$, a point \mathbf{x} is called an interior point of S if there exists an $\varepsilon>0$ such that $B(\mathbf{x} ; \varepsilon) \subset S$. The set of all interior points of S is denoted by int S, and it is always true that int $S \subset S$.

If $S=\operatorname{int} S$, then we say that S is an open set. In other words, S is open if and only if for every $\mathbf{x} \in S$, there exists an $\varepsilon>0$ such that $B(\mathbf{x} ; \varepsilon) \subset S$.

Question 2. It is often easier to prove that a given set S is not open. To do so, one needs to find a point $\mathbf{x} \in S$ such that for no $r>0, B(\mathbf{x} ; r) \subset S$. In other words, one needs to find a $\mathbf{x} \in S$ such that for all $r>0$, there exists some $y \in B(\mathbf{x} ; r)$ such that $y \in B(\mathbf{x} ; r)$ but $y \notin S$. Show that the following subsets $S \subset \mathbb{R}^{n}$ are not open.
(a) $\{a\} \subset \mathbb{R}$
(b) $\left\{(x, 0) \in \mathbb{R}^{2} \mid x \in \mathbb{R}\right\} \subset \mathbb{R}^{2}$
(c) $\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0\right.$ and $\left.y \geq 0\right\} \subset \mathbb{R}^{2}$

Question 3. In what follows, we will demonstrate an important topological property of $\mathbb{Q} \subset \mathbb{R}$.
(a) Let $a \in \mathbb{Q}$. Show that $a+\frac{\sqrt{2}}{n}$ is irrational for all $n \in \mathbb{Z}_{+}$.
(b) Use (a) to show that \mathbb{Q} is not an open subset of \mathbb{R}.

Given a set $S \subset \mathbb{R}^{n}$, a point $\mathbf{x} \in S$ is called an isolated point of S if there exists an $\varepsilon>0$ such that $B(\mathbf{x} ; \varepsilon) \cap S=\{x\}$. In other words, \mathbf{x} is isolated in S if there is a small enough $\varepsilon>0$ such that $B(\mathbf{x} ; \varepsilon)$ intersects S only at \mathbf{x} itself. A set S is called discrete if every point in S is isolated.

Question 4. Show that the following sets are or are not discrete.
(a) Show that \mathbb{Z} is a discrete subset of \mathbb{R}.
(b) Show that ever finite subset of \mathbb{R} is a discrete subset of \mathbb{R}.
(c) Show that $S=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{Z}_{+}\right\}$is a discrete subset of \mathbb{R}
(d) Show that $T=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{Z}_{+}\right\} \cup\{0\}$ is not a discrete subset of \mathbb{R}.

Question 5. Let $U, V \in \mathbb{R}$ be open sets. Consider the product set

$$
U \times V=\{(x, y) \mid x \in U, y \in V\} \subset \mathbb{R}^{2}
$$

Show that $U \times V$ is open by showing that each $(x, y) \in U \times V$ is an interior point.

Question 6. Consider the set

$$
T=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid\|\mathbf{x}\|<1\right\}
$$

Geometrically, this set is just an "open disk" of radius 1 about the origin. Consider

$$
\mathbb{S}^{1}=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid\|\mathbf{x}\|=1\right\}
$$

Geometrically, \mathbb{S}^{1} is the circle of radius 1 about the origin. We will show that every point in \mathbb{S}^{1} is an accumulation point of T (and therefore an adherent point of T).

As a hint, you may want to follow something similar to the below outline:
Let $\mathbf{x} \in \mathbb{S}^{1}$. We will show that for all $\varepsilon>0, B(\mathbf{x} ; \varepsilon) \cap(T-\{\mathbf{x}\}) \neq \varnothing$. First, note that $T-\{x\}=T$ since $\mathbf{x} \notin T$. Thus, we wish to show that $B(\mathbf{x} ; \varepsilon) \cap T \neq \varnothing$. Then, consider the 2 cases: $\varepsilon>1$ or $0<\varepsilon \leq 1$. In the last case, it might be wise to consider $\left(1-\frac{\varepsilon}{2}\right) \mathbf{x}$.

