Math 431 - Real Analysis I Homework due October 31

In class, we learned that a function $f: S \rightarrow T$ between metric spaces $\left(S, d_{S}\right)$ and $\left(T, d_{T}\right)$ is continuous if and only if the pre-image of every open set in T is open in S. In other words, f is continuous if for all open $U \subset T$, the pre-image $f^{-1}(U) \subset S$ is open in S.

Question 1. Let S, T, and R be metric spaces and let $f: S \rightarrow T$ and $g: T \rightarrow R$. We can define the composition function $g \circ f: S \rightarrow R$ by

$$
g \circ f(s)=g(f(s))
$$

(a) Let $U \subset R$. Show that $(g \circ f)^{-1}(U)=f^{-1}\left(g^{-1}(U)\right)$
(b) Use (a) to show that if f and g are continuous, then the composition $g \circ f$ is also continuous

Question 2. Let $\left(S, d_{S}\right)$ and $\left(T, d_{T}\right)$ be metric spaces and let $f: S \rightarrow T$.
(a) A function is called constant if $f(s)=t_{0}$ for all $s \in S$. Show that any constant function is continuous.
(b) Show that if d_{S} is the discrete metric, then any function f is continuous.

Question 3. The floor function $f: \mathbb{R} \rightarrow \mathbb{R}$ is given by $f(x)=\lfloor x\rfloor$, where $\lfloor x\rfloor x$ is the largest integer less than or equal to x.
(a) Let $a \notin \mathbb{Z}$. Use an $\varepsilon-\delta$ proof to show that $f(x)=\lfloor x\rfloor$ is continuous at a.
(b) Let $a \in \mathbb{Z}$. Show that $f(x)=\lfloor x\rfloor$ is not continuous at a. To do so, find an $\varepsilon>0$ such that for any $\delta>0$, there exists an x with $|x-a|<\delta$ such that $|f(x)-f(a)| \geq \varepsilon$.

Question 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function.
(a) Assume that $f(x) \geq 0$ for all $x \in[0,1]$. Show that if $f(c)>0$ for some $c \in(0,1)$, then

$$
\int_{0}^{1} f(x) d x>0
$$

(b) Show that the above is no longer true if the term "continuous" is dropped. That is, given an example of a (necessarily discontinuous) function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \geq 0$ and $f(c)>0$ for some $c \in(0,1)$, yet

$$
\int_{0}^{1} f(x) d x=0
$$

Question 5. Recall that we can equip $C([0,1])$, the space of all continuous functions on $[0,1]$, with its L^{1} metric, which is given by

$$
d(f, g)=\int_{0}^{1}|f(x)-g(x)| d x
$$

Consider the function $\varphi: C([0,1]) \rightarrow \mathbb{R}$ given by

$$
\varphi(f)=\int_{0}^{1} f(x) d x
$$

In this question, we will show that φ is a continuous function.
(a) Show that

$$
\left|\int_{0}^{1} h(x) d x\right| \leq \int_{0}^{1}|h(x)| d x
$$

Hint: We previously proved that $-|a| \leq a \leq|a|$ for all $a \in \mathbb{R}$.
(b) Use the above to give an $\varepsilon-\delta$ proof that φ is continuous.

Question 6. In this question, we will prove the Brouwer Fixed Point Theorem. In what follows, let $f:[0,1] \rightarrow[0,1]$ be a continuous function.
(a) A number $c \in[0,1]$ is called a fixed point of f if $f(c)=c$. Define $g(x)=f(x)-x$. Show that c is a fixed point of f if and only if c is a root of g.
(b) Use (a) and Bolzano's Theorem to show that every continuous function $f:[0,1] \rightarrow[0,1]$ has a fixed point.
(c) Give an example of a continuous function $f:(0,1) \rightarrow(0,1)$ that has no fixed points. Be sure to prove that our f is fixed-point-free.

Question 7. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

We will show that f is continuous only at $a=0$.
(a) Use an $\varepsilon-\delta$ proof to show that $f(x)$ is continuous at $a=0$.
(b) Use the theorem relating convergent sequences to continuous functions to show that if $a \neq 0$, then $f(x)$ is not continuous at a.

