Math 431 - Real Analysis I Homework due October 22

Question 1. Sequences are frequently given recursively, where a beginning term x_{1} is specified and subsequent terms can be found using a recursive relation. One such example is the sequence defined by $x_{1}=1$ and

$$
x_{n+1}=\sqrt{2+x_{n}} .
$$

(a) For $n=1,2, \ldots, 10$, compute x_{n}. A calculator may be helpful.
(b) Show that x_{n} is a monotone increasing sequence. A proof by induction might be easiest.
(c) Show that the sequence x_{n} is bounded below by 1 and above by 2 . For the above bound, induction might again be best.
(d) Use (b) and (c) to conclude that x_{n} converges.

Question 2. One very important class of sequences are series, in which we add up the terms of a given sequence. One such example is the following sequence:

$$
S_{n}=\sum_{k=0}^{n} \frac{1}{k!}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}
$$

(a) For $n=0,1,2, \ldots, 6$, compute S_{n}. Again, a calculator may be helpful; be sure to use several digits.
(b) Show that S_{n} is monotone increasing.
(c) Use induction to show that for all $n \geq 1, n$! $\geq 2^{n-1}$.
(d) Use (c) to show that

$$
S_{n} \leq 1+\sum_{k=1}^{n} \frac{1}{2^{k-1}}
$$

(e) Use well-known facts from Calculus II and the geometric series to show that

$$
1+\sum_{k=1}^{n} \frac{1}{2^{k-1}}<3
$$

(f) Use (b), (d), and (e) to conclude that S_{n} converges.

Question 3. In class, we learned that a sequence in \mathbb{R}^{k} is convergent if and only if it is Cauchy. We have previously proven using the definition of convergence that the sequence

$$
x_{n}=\frac{1}{n}
$$

converges (to 0). Thus, it should also be Cauchy. In this problem, we will prove directly that it is Cauchy.
(a) Let $n, m \in \mathbb{Z}_{+}$. Show that

$$
\left|\frac{1}{n}-\frac{1}{m}\right|<\frac{1}{n}+\frac{1}{m}
$$

(b) Use (a) to show that $x_{n}=\frac{1}{n}$ is a Cauchy sequence. To do so, given an $\varepsilon>0$, find an N such that for all $n, m>N$,

$$
\left|\frac{1}{n}-\frac{1}{m}\right|<\frac{1}{n}+\frac{1}{m}<\varepsilon
$$

Question 4. Consider the sequence of partial sums given by

$$
S_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}
$$

We will show that S_{n} converges by showing it is Cauchy.
(a) If $n, m \in \mathbb{Z}_{+}$with $m>n$, show that

$$
\left|S_{m}-S_{n}\right|=\sum_{k=n+1}^{m} \frac{1}{k^{2}}
$$

(b) Show that $\frac{1}{k^{2}}<\frac{1}{k(k-1)}$ for $k \geq 2$.
(c) Show that

$$
\sum_{k=n+1}^{m} \frac{1}{k(k-1)}=\frac{1}{n}-\frac{1}{m}
$$

As a hint, think about telescoping series from Calculus II.
(d) Use the above to show that

$$
\left|S_{m}-S_{n}\right|<\frac{1}{m}+\frac{1}{n}
$$

(e) Use (d) in a proof to show that S_{n} is Cauchy and thus converges.

Question 5. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ with $a, L, M, k \in \mathbb{R}$. Furthermore, assume that

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=M
$$

Give an $\varepsilon-\delta$ proof to show the following:
(a) $\lim _{x \rightarrow a} k \cdot f(x)=k \cdot L$
(b) $\lim _{x \rightarrow a} f(x)+g(x)=L+M$

