Math 431 - Real Analysis I Homework due November 21

Question 1. The following questions use the ever-important Mean Value Theorem.
(a) Let $f(x)$ be any quadratic polynomial $f(x)=\alpha x^{2}+\beta x+\gamma$. Consider the secant line joining the points $\left(t_{1}, f\left(t_{1}\right)\right)$ and $\left(t_{2}, f\left(t_{2}\right)\right)$. What is the slope of this secant line (in terms of α, β, γ, and $\left.t_{i}\right)$? Simplify as much as possible.
(b) For the f in (a), the Mean Value Theorem guarantees the existence of some $c \in\left(t_{1}, t_{2}\right)$ such that $f^{\prime}(c)$ is equal to the above slope. For this particular f, what is this point c ?
(c) Use the Mean Value Theorem to deduce the following inequality for all x, y :

$$
|\sin y-\sin x| \leq|y-x|
$$

You may use the fact that $\sin x$ is everywhere differentiable.

Question 2. Let f be a function that is continuous on $[a, b]$ and second differentiable (i.e., $f^{\prime \prime}$ exists) on (a, b). Assume that the line segment joining the points $A=(a, f(a))$ and $B=(b, f(b))$ intersect the graph of f in a third point different from A and B. Show that $f^{\prime \prime}(c)=0$ for some $c \in(a, b)$.

Question 3. Let f and g be differentiable functions. Show that if $f^{\prime}(x)=g^{\prime}(x)$ for all x, then $f(x)=g(x)+k$ where $k \in \mathbb{R}$.

Question 4. The hypotheses of the Mean Value Theorem are each quite important. They state that f must be continuous on $[a, b]$ and differentiable on (a, b).
(a) Find a counterexample to the MVT if the hypothesis " f is differentiable on (a, b) " is dropped. To do this, find a function that is continuous on $[a, b]$ but not differentiable on (a, b) where

$$
f^{\prime}(c) \neq \frac{f(b)-f(a)}{b-a}
$$

for all c.
(b) Find a counterexample to the MVT if the hypothesis " f is continuous on $[a, b]$ " is dropped. To do this, find a function that is not continuous on all of $[a, b]$ but f is differentiable on (a, b) where

$$
f^{\prime}(c) \neq \frac{f(b)-f(a)}{b-a}
$$

for all c.
Question 5. Let $a, r \in \mathbb{R}$ with $r \neq 1$. Use induction to show that

$$
\sum_{k=0}^{n} a r^{k}=\frac{a-a r^{n+1}}{1-r}
$$

for all $n \geq 0$.
Question 6. In this question, we will show that if $|r|<1$, then $r^{n} \rightarrow 0$.
(a) State the binomial theorem. Use it to show that if $b>0$, then $(1+b)^{n}>n b$.
(b) Prove that if $|r|<1$, then $r^{n} \rightarrow 0$ using an $\varepsilon-N$ proof. To do so, it would be wise to note that if $|r|<1$, then

$$
|r|=\frac{1}{1+b}
$$

for some $b>0$.

