Question 1. The following questions use the ever-important Mean Value Theorem.

(a) Let \(f(x) \) be any quadratic polynomial \(f(x) = \alpha x^2 + \beta x + \gamma \). Consider the secant line joining the points \((t_1, f(t_1)) \) and \((t_2, f(t_2)) \). What is the slope of this secant line (in terms of \(\alpha, \beta, \gamma \), and \(t_i \))? Simplify as much as possible.

(b) For the \(f \) in (a), the Mean Value Theorem guarantees the existence of some \(c \in (t_1, t_2) \) such that \(f'(c) \) is equal to the above slope. For this particular \(f \), what is this point \(c \)?

(c) Use the Mean Value Theorem to deduce the following inequality for all \(x, y \):

\[|\sin y - \sin x| \leq |y - x|. \]

You may use the fact that \(\sin x \) is everywhere differentiable.

Question 2. Let \(f \) be a function that is continuous on \([a,b]\) and second differentiable (i.e., \(f'' \) exists) on \((a,b)\). Assume that the line segment joining the points \(A = (a, f(a)) \) and \(B = (b, f(b)) \) intersect the graph of \(f \) in a third point different from \(A \) and \(B \). Show that \(f''(c) = 0 \) for some \(c \in (a,b) \).

Question 3. Let \(f \) and \(g \) be differentiable functions. Show that if \(f'(x) = g'(x) \) for all \(x \), then \(f(x) = g(x) + k \) where \(k \in \mathbb{R} \).

Question 4. The hypotheses of the Mean Value Theorem are each quite important. They state that \(f \) must be continuous on \([a, b]\) and differentiable on \((a, b)\).

(a) Find a counterexample to the MVT if the hypothesis “\(f \) is differentiable on \((a, b)\)” is dropped. To do this, find a function that is continuous on \([a, b]\) but not differentiable on \((a, b)\) where

\[f'(c) \neq \frac{f(b) - f(a)}{b - a} \]

for all \(c \).

(b) Find a counterexample to the MVT if the hypothesis “\(f \) is continuous on \([a, b]\)” is dropped. To do this, find a function that is not continuous on all of \([a, b]\) but \(f \) is differentiable on \((a, b)\) where

\[f'(c) \neq \frac{f(b) - f(a)}{b - a} \]

for all \(c \).

Question 5. Let \(a, r \in \mathbb{R} \) with \(r \neq 1 \). Use induction to show that

\[\sum_{k=0}^{n} ar^k = \frac{a - ar^{n+1}}{1 - r} \]

for all \(n \geq 0 \).

Question 6. In this question, we will show that if \(|r| < 1 \), then \(r^n \to 0 \).

(a) State the binomial theorem. Use it to show that if \(b > 0 \), then \((1 + b)^n > nb \).

(b) Prove that if \(|r| < 1 \), then \(r^n \to 0 \) using an \(\varepsilon - N \) proof. To do so, it would be wise to note that if \(|r| < 1 \), then

\[|r| = \frac{1}{1 + b} \]

for some \(b > 0 \).