MATH 431 - REAL ANALYSIS I Homework due November 14

Let S and T be metric spaces. We say that a function $f: S \to T$ is uniformly continuous on $A \subset S$ if for all $\varepsilon > 0$, there exists a $\delta > 0$ such that whenever $x, y \in A$ with $d_S(x, y) < \delta$, then $d_T(f(x), f(y)) < \varepsilon$.

Question 1. Let $f : \mathbb{R} \to \mathbb{R}$ be uniformly continuous on a set $A \subset \mathbb{R}$.

- (a) Let $k \in \mathbb{R}$. Show that $k \cdot f$ is also continuous on A.
- (b) If $g: \mathbb{R} \to \mathbb{R}$ is also uniformly continuous on A, show that f + g is uniformly continuous on A.
- (c) Let $m, b \in \mathbb{R}$. Show that h(x) = mx + b is uniformly continuou on any $A \subset \mathbb{R}$.

Question 2. Use the $\varepsilon - \delta$ definition to show that the function $f(x) = x^n$ uniformly continuous on [-1, 1] for all $n \in \mathbb{Z}_+$. To do so, it may be helpful to remember that we previously proved that

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{k} y^{n-1-k}$$

In class, we gave the definition of the derivative of a function at a point. If f is a real function defined on some open interval (a, b) such that $c \in (a, b)$, then we say f is differentiable at c of the following limit exists:

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

If this limit exists, then we denote it by f'(c) as call it the *derivative of* f at c.

Question 3. Use the limit definition to compute the derivative of

$$f(x) = \frac{3x+4}{2x-1}$$

at every $c \neq 1/2$.

Question 4. Consider the function

$$f(x) = \begin{cases} 0 & \text{if } x \le 0\\ x^2 & \text{if } x > 0 \end{cases}$$

Show that f is differentiable at 0 by showing that f'(0) = 0. To do so, you will have to use the limit definition of the derivative, which will include an $\varepsilon - \delta$ proof.

Question 5. In this question, we will prove the quotient rule using the product rule and the chain rule.

(a) Use the definition of the derivative to show that if $f(x) = \frac{1}{x}$, then

$$f'(a) = \frac{-1}{a^2}.$$

(b) Use (a), the product rule, and the chain rule to prove the quotient rule.

Question 6.

(a) Consider the function

$$f(x) = \begin{cases} \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Show that f is not differentiable at x = 0. [Hint: Differentiable implies continuous]

(b) Consider the function

$$g(x) = \begin{cases} x^2 \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Show that g is differentiable at 0 at that g'(0) = 0.