ICS 351: Today's plan

- distance-vector routing game
- link-state routing
- OSPF
distance-vector routing game

1. prepare a list of all neighbors and the links to them, and the metric for each link
2. create your initial routing table with the directly connected networks
3. distribute your routing table to every neighbor
4. add or remove incoming routes, timestamp
5. return to step 3 whenever the table changes
link-state routing

- in distance-vector (Bellman-Ford, Ford-Fulkerson, RIP-style) routing, each router distributes its routing table to its neighbors
- an alternative is for each router to broadcast its neighborhood connectivity to all routers
- once a router has heard from every other router, it can puzzle the network together from the pieces
- once a router has a network map, it can find routes in the map (using a shortest path graph algorithm), and build its routing table accordingly
- in practice, this process runs incrementally
- the neighborhood connectivity describes the state (up or down, and perhaps bandwidth and load) of all the links to which a router is connected, so this algorithm is called Link-State
link-state routing protocols

- in wireless ad-hoc networks, OLSR stands for Optimized Link-State Routing protocol
- in wired IP networks, OSPF stands for Open Shortest Path First
- IS-IS (Intermediate System to Intermediate System routing) also uses link-state routing
link-state routing game

1. prepare a list of all neighbors and the links to them (HELLO protocol)
2. make a copy for every router in the network
3. distribute a copy to every router in the network (by sending it to the neighbors, and letting them distribute it)
4. build the network map
5. find the shortest path to each router
6. build the routing table
Flooding Link State Advertisements

- each router is responsible for distributing copies of every link-state advertisement that it gets
- if there are loops, this means each router will get multiple copies of each LSA
- so LSAs are only forwarded if they are new
- LSAs are acknowledged to the sender, and LSAs are resent if there is no acknowledgement, so that the transmission is reliable
OSPF basics

- OSPF generally used within a single Autonomous System (AS), i.e. within an organization (IGP, Interior Gateway Protocol)
- reliably finds shortest paths quickly
- reliably and quickly removes dead links
- divides AS into areas, including a backbone area
- defined in RFC 2328 (and in RFC 5340 for IPv6)
OSPF areas

- all areas are connected to the backbone area
- all routing information is disseminated over the backbone area
- routers in OSPF play different roles, for example a backbone router is connected to the backbone, an area border router is connected to more than one area (and is usually also a backbone router), and an internal router is only connected to routers in the same area
- every area has one Designated Router which receives then rebroadcasts link-state updates
- defined in RFC 2328 (and in RFC 5340 for IPv6)
RIP compared to OSPF

- both RIP and OSPF find optimal paths
- OSPF generally finds them much more quickly
- OSPF can use multiple metrics
- RIP generally sends less data (somewhat lower overhead)
- OSPF is more complex: more configurable, more code
More OSPF details

- each router has a list of all link states
- an algorithm such as Dijkstra's shortest path algorithm can be used to build a directed acyclic graph (DAG) with the router at the root, and all other networks reachable through the DAG
- multiple equal-cost paths can be used for each destination
- OSPF supports authentication among routers (null authentication is an option)
- link-state advertisements expire if they are too old
Network design for OSPF areas

- areas can be used in larger networks to minimize the amount of information exchanged among routers
- routers outside an area don't have all the link state information of routers inside the area
- areas form a 2-level hierarchy with the backbone at the root, and all the other areas below the backbone