ICS 351: Today's plan

- network security
- wireless ad-hoc and mesh networks
- IPv6
 - review and more details
- HTML
- HTTP
- web scripting languages
network security

"in the clear" protocol can be easily broken when information is snooped:
- telnet, ftp, http, and many email protocols

encrypted protocols are secure against many attacks, including someone examining the data: ssh/scp, https, secure POP/IMAP, PGP
- most protocols are not secure against traffic analysis

host security is more concerned with installing applications, (not) running foreign code, firewalls/NATs, etc
security principles

- it is usually better to have more security than less security
- security that inconveniences users is more likely to be resisted or circumvented
- security can lock out people who should have access
- data requiring security should not be sent unencrypted over the Internet
 - because some of the links may be accessible to adversaries
- data requiring security is still sometimes sent unencrypted over the Internet
 - though data with monetary value is usually protected
- encryption can be at any layer
 - but is most effective end-to-end
wireless ad-hoc networks

- using the ad-hoc mode of 802.11, any machine ("node") may directly talk to any other node
- if nodes agree to forward data for each other, they can form a wireless ad-hoc network
- machines may move or go to sleep, so routing can be challenging
- also, the notion of a "link" is different for wired and wireless networks: successful wireless protocols take advantage of broadcasting
- generally machines should discover each other and automatically send data to the destination
wireless mesh networks

- a wireless mesh network consists of static wireless nodes
- possibly with some wired nodes coordinating to provide Internet access
- mobile nodes may obtain Internet access from nodes in a mesh network
review: IPv6 addresses

- IPv6 uses 128-bit addresses instead of the 32-bit IPv4 addresses.
- These are written as 8 groups of 4 hex digits separated by colons:
 1234:5678:0000:0000:0000:0008:9ABC:DEF0
- Leading zeros may be omitted:
 1234:5678:0:0:0:8:9ABC:DEF0
- A single sequence of all-zero groups can be omitted:
 1234:5678::8:9ABC:DEF0
- Networks are followed by a slash to indicate the number of bits in the network number: 1234:5678/32
Specific IPv6 addresses

- The loopback address is ::1
- An interface with a MAC address automatically has a non-routable IPv6 address: fe80::48 bits of MAC address+16 inserted bits
 - For example, with a hardware address of 00:01:03:a0:31:51, my non-routable IPv6 address will be fe80::201:3ff:fea0:3151 -- note the "u" bit is set to one to indicate universal scope
- Globally routable unicast addresses have a network and subnetwork number in the most significant 64 bits
- ff00:/8 addresses are multicast addresses
the IPv6 header is twice as big as the (minimal) IPv4 header, but simpler (from RFC 2460):

```
+-----------------------------------+
| Version | Traffic Class | Flow Label |
+-----------------------------------+
| Payload Length | Next Header | Hop Limit |
+-----------------------------------+
| Source Address |
+-----------------------------------+
```
IPv6 details

- instead of IP header options, there may be extension headers
- fragmentation is only done by the sender, and path MTU discovery is required
- upper layer is now required to checksum.
- when sent over Ethernet, the Ethertype field is 0x86DD instead of 0x800. (RFC 2464)
- Neighbor Discovery Protocol (NDP, RFC 2461) replaces both ARP and DHCP, uses IPv6 packets
 - IPv6 hosts can self-generate an address:
 - `fe80::/64 + 64 bits from the MAC address`
 - or a randomly-chosen 64 bits
IPv6 routing

• almost the same routing protocols as for IPv4:
 • RIPng, OSPFv6, BGP with multiprotocol extensions
• more bits for the netmask, so more opportunities for subnetting
 • and plenty of (re)configuration!
• HyperText Markup Language

• an in-line way of marking (hyper)text, similar in spirit to TeX/LaTeX, and inspiring the creation of XML

• part of the markings are about style and formatting: font, size, bold/italic, bullet lists, etc.

• some markings lead you to other pages or objects, e.g.

 home page, or

objects are identified by URLs (all URLs are also URIs)

• each URL has a protocol (scheme name, e.g. http), a host identifier (DNS name or IP address), an optional port number (:80 if not specified), and the path given to the server
typical HTTP interaction

- client is given a URL, splits it into domain name (port) and path
- client resolves domain name to IP address
- client opens a connection to the IP address (port 80, or the given port), server accepts connection (TCP 3-way handshake)
- client sends HTTP request
- server sends HTTP response
- after parsing response and finding embedded images or other content, client sends new HTTP requests on same TCP connection
- server replies to each request in sequence
- client matches each response to its request, renders the page
- after a time (typically 30s), the server closes the connection
all HTTP is rendered using ASCII. This makes it easy to read, a little harder to parse

for example, an HTTP request might look like this:

```
GET /~esb/ HTTP/1.1
Host: www2.ics.hawaii.edu
Accept: */*
Connection: close
```
a corresponding HTTP reply might look like this:

HTTP/1.1 200 OK
Date: Thu, 19 Nov 2009 05:18:56 GMT
Server: Apache
Last-Modified: Wed, 02 Sep 2009 03:17:30 GMT
ETag: "19abf-2095-4728fb5090680"
Accept-Ranges: bytes
Content-Length: 8341
Connection: close
Content-Type: text/html

<html>...
HTTP headers

- in each case, the first line describes the main request or result:
 - in the request, the method can be GET, HEAD, POST, or a few others,
 - the path is specified immediately after the request,
 - the protocol version follows the path
 - in the reply, the version comes first, followed by the result code, both as a number and as a string
- the remaining lines of the header give more details, sometimes essential details (e.g. the content type and content length)
- each header ends with an empty line
HTTP/2

- headers are not ASCII and support compression of header information
- server can push data that was not requested, for example images needed to render a web page
- content for several requests can be interleaved on a single TCP connection
 - meaning slow content that the server begins to send early need not block later fast content
web scripting languages

- web content described by HTML was originally static, corresponding to files on the server.
- since the server is a program, it can generate content that is generated dynamically, e.g. put the user's name (or bank balance) within the web page.
- however, this requires the server administrator to modify the code of the server, which is error-prone.
- so instead, the server program can execute a server-side script to generate new content to be served.
- this script can be written in any language supported by the system on which the server is running.
client-side scripts

- even with a server-side script, each change in the web page requires an HTTP request and reply, and requires that the page be rendered again
- and usually requires an explicit user action such as a mouse click
- to have more interactivity, many browsers have been designed to execute *client-side scripts* that can modify the displayed page and exchange data over the internet
- client-side scripts are usually in Java or Javascript
client-side scripts and security

- while client-side scripts do much to improve the appearance of pages, there can be concerns about security and reliability
- client-side scripts let servers execute code on a client – how does the client know what the code will do? can the client trust the server?
- in an attempt to address these concerns, browsers limit what scripts are allowed to do
- not all browsers execute client-side scripts
server-side scripts and security

- bugs in a server-side script can be exploited by attackers
- server-side scripts that do not thoroughly check their input are vulnerable, e.g. to SQL injection attacks

 [xkcd](http://xkcd.com/327/)

- a server-side script lets the client execute code on the server
- the server controls what scripts are available, but not what the clients will do with the scripts