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Abstract 

Sub-auditory speech recognition using 

electromyogram (EMG) sensors is potentially useful 

for interfaces in noisy environments, for discreet or 

secure communications, and for users with speech 

related disabilities. Past research has shown that a 

scaled conjugate gradient neural network, using dual 

tree wavelets for feature transformation, can 

categorize EMG signals for small sets of individual 

words. Here we describe an attempt to recognize the 

individual phonemes of the English language. 

Recognition rates are significantly higher than 

chance; however, they are not high enough to be 

useful without further improvements, perhaps from 

using multiple neural networks on specialized 

recognition tasks,  better sensor placement, and/or 

moving on to di/triphone recognition as is commonly 

used in audible speech processing. 

Introduction 

Speech recognition research and technology 

to date (e.g. Huang et al, 2001) has, quite naturally, 

focused on audible speech. However, there are many 

applications that call for sub-auditory speech 

recognition. In particular, sub-auditory speech 

recognition would be valuable in noisy environments 

(e.g. crowded rooms, cockpits), in environments 

where sound does not carry well or at all (e.g. 

underwater, near-vacuum), when discreet or secure 

communications are necessary or desirable (e.g. 

military applications, off-line comments during 

meetings), and for users with speech-related 

disabilities (e.g. vocal cord damage). 

Relevance  

NASA is interested in multi-modal 

interfaces as a way of increasing communication 

robustness and reducing information overload in 

human-human and human-agent systems. Imagine an 

astronaut exploring the surface of Mars, in 

collaboration with other human astronauts, a variety 

of robotic rovers, intelligent shipboard systems, and a 

mixed human-agent team back on Earth. In a space 

suit, both inputs and outputs are severely limited, and 

audible speech is by far the most convenient 

communications channel. However, audible speech 

interfaces cannot support many parallel interactions 

and, in the case of human-agent communication, are 

not very robust in the presence of noise, speaker 

stress, changes in gas mixture, etc. By adding sub-

vocal speech to the repertoire of space suit interface 

designers, we hope to increase the robustness of 

audible speech by providing redundancy, and also to 

provide an alternate means of communication when 

appropriate (e.g. discreet communications) or 

necessary (e.g. a physiological problem renders the 

audible speech interface unusable). 

Related Work 

Little work appears to have been done on the 

usefulness of EMG sensors alone in speech 

recognition. Auditory speech recognition 

augmentation with EMG sensors, along the lines of 

that in our word experiments, was performed by 

Chan (2001), who proposed supplementing voiced 
Figure 1: Raw EMG signal for 

subvocalized word "omega". 



speech with EMG in the context of aircraft pilot 

communication. Chan studied the feasibility of 

augmenting auditory speech information with EMG 

signals recorded from primary facial muscles using 

sensors imbedded in a pilot oxygen mask. Chan used 

five surface signal sites during vocalized 

pronunciation of the digits zero to nine using Ag-

AgCl button electrodes and an additional acoustic 

channel to segment the signals. This work 

demonstrated the potential of using information from 

multi-source aggregated surface sensors to improve 

performance of a conventional speech recognition 

engine.  

 

Approach 

Here, we attempt to apply lessons learned 

from signal processing in general, and speech 

recognition in particular, to the problem of sub-

auditory speech recognition. Using EMG sensors 

placed strategically in the throat area (see Figure 2), 

we hope to detect pre-speech EMG signals, and 

recognize the intended speech, even when it is not 

produced audibly. A key research question is: To 

what extent can audible speech recognition 

technologies and principles be applied to the problem 

of sub-auditory speech recognition?  

Our past work (Jorgensen et al, 2003) has 

shown considerable promise. Using dual tree 

wavelets for feature transformation and a scaled 

conjugate gradient net for categorization, Jorgensen 

et al achieved 92% word recognition, over a set of six 

control words (“stop”, “go”, “left”, “right”, “alpha” 

and “omega”). A raw EMG signal from this 

experiment is shown in Figure 1. Similar results have 

been achieved for the digits (“zero” through “nine”).  

However, for a practical speech recognition interface, 

it is probably necessary to recognize sub-word 

patterns, because of the large number of words 

available to speakers. 

Here, we establish a baseline for sub-

auditory speech recognition by applying the approach 

described above to the task of recognizing all the 

phonemes used in the English language (see Table 1).  

 

Data Collection 
Two subjects, both female, were used. Two 

symmetrical EMG sensors (two electrodes each) 

were placed on the throat of each subject. Each 

subject was asked to sub-vocalize each phoneme, 

while thinking of the target word for that phoneme. 

For example, while sub-vocalizing the phoneme ao, 

the subject would focus on the central vowel sound of 

the word “dog”. On each subvocalization, the subject 

pressed a key, to record signal timing. 

Vowels Words Consonants Words

ax ago b big

ay bite ch chin

uh book k cut

aa car d dig

ah cut f fork

ey day zh genre

ao dog g gut

iy feel hh help

aw foul jh joy

ae gas l lid

ow go m mat

ih hit n no

axr percent p put

eh pet r red

ix sick sh she

uw tool sh sit

oy toy t talk

er turn dh then

th thin

v vat

w with

y yacht

z zap

Phonemes

Table 1: English language phonemes. 

Figure 2: EMG sensor placement. 



Although vowel phonemes are syllables in 

their own right, consonant phonemes are difficult to 

pronounce (even sub-vocally) on their own. For this 

reason, subjects were asked to pronounce the 

consonant phonemes plus the vowel phoneme ax. So, 

the consonant phoneme d would be pronounced as 

dax, or “duh”.  

Each subject generated ten sets for each 

phoneme, each set consisting of approximately 

twelve examples. Since each of the two signal 

channels is processed independently, this leads to 

12x10x2=240 signals per phoneme per subject. 

Data Processing 

From the raw data, 1.5 second-long samples 

were automatically extracted whenever the signal 

exceeded a threshold. Then, each sample was 

reviewed both automatically and manually, so that 

poor data (e.g. no subject key press indicated, or 

overlapping signals) could be removed. In order to 

introduce some temporal noise (which seems to help 

with training the network) into the sample set, we 

then shifted each sample a small amount right and 

left, resulting in five samples for each original 

big cut fork genre gut help lid mat no put red she then thin vat with yacht TOTAL

big 28 5 14 0 0 0 7 12 0 30 0 0 0 0 0 5 0 101

cut 3 44 0 0 15 0 9 0 3 0 15 3 0 0 3 6 0 101

fork 2 4 44 0 2 0 2 2 4 4 4 4 0 0 25 5 0 102

genre 0 4 0 38 0 0 9 0 18 0 13 11 0 0 0 7 0 100

gut 0 18 0 4 41 4 20 0 2 0 0 2 6 0 0 2 2 101

help 0 0 8 0 3 56 10 0 5 3 8 5 0 0 3 0 0 101

lid 0 7 2 0 5 0 74 0 0 7 2 0 0 0 0 0 2 99

mat 13 0 0 0 0 0 0 61 0 6 6 0 2 0 11 2 0 101

no 0 3 3 0 3 0 5 0 81 0 0 0 0 0 0 5 0 100

put 14 5 5 0 2 2 9 2 5 44 7 0 0 2 2 0 0 99

red 0 2 2 2 0 2 2 2 2 0 66 0 0 9 2 7 0 98

she 0 4 0 13 0 0 4 0 4 0 29 36 0 2 2 4 0 98

then 3 9 0 0 0 0 0 0 0 6 9 3 49 23 0 0 0 102

thin 0 0 0 0 0 0 0 2 0 0 2 0 14 79 2 0 0 99

vat 5 0 19 2 0 2 0 2 0 9 2 2 0 0 53 2 0 98

with 0 2 0 2 0 0 6 6 2 2 27 0 0 0 6 46 0 99

yacht 0 14 0 18 0 0 16 2 4 6 27 0 4 4 0 0 4 99

TOTAL 68 121 97 79 71 66 173 91 130 117 217 66 75 119 109 91 8

ago bite book car cut day dog feel foul gas go hit percentpet sick tool toy turn TOTAL

ago 48 0 0 3 5 0 5 3 0 13 0 0 0 10 15 0 0 0 102

bite 6 27 0 0 0 6 0 27 0 3 0 0 0 3 3 0 18 6 99

book 28 5 26 3 0 0 0 0 0 3 5 3 3 0 3 10 10 3 102

car 12 5 2 7 5 14 7 0 0 21 0 7 2 7 7 0 0 5 101

cut 21 4 10 2 10 0 10 2 2 10 2 0 0 17 10 0 2 0 102

day 2 2 0 0 0 20 2 42 0 11 0 0 0 7 4 0 9 0 99

dog 12 5 0 7 0 0 32 5 0 17 2 5 0 7 5 2 0 0 99

feel 0 0 0 0 0 5 0 93 0 2 0 0 0 0 0 0 0 0 100

foul 0 2 2 2 2 0 4 10 56 4 6 0 0 2 0 8 0 2 100

gas 5 0 0 0 3 5 3 5 0 73 0 0 0 5 0 0 0 0 99

go 3 3 0 6 8 3 0 6 28 3 17 3 0 3 0 17 0 3 103

hit 13 3 3 0 0 3 0 8 0 18 0 5 3 23 20 3 3 0 105

percent 7 10 2 0 2 10 2 7 2 12 2 0 15 10 0 0 12 5 98

pet 9 2 0 0 0 0 12 2 0 19 0 5 2 28 21 0 0 0 100

sick 18 3 0 0 0 3 8 0 0 13 0 3 0 18 33 3 3 0 105

tool 3 9 3 0 0 0 0 0 9 6 15 3 3 0 0 29 15 6 101

toy 0 2 2 0 0 0 0 2 0 0 0 0 0 0 2 2 91 0 101

turn 2 7 0 2 2 2 0 24 7 5 2 0 2 2 0 5 7 29 98

TOTAL 189 89 50 32 37 71 85 236 104 233 51 34 30 142 123 79 170 59

Table 2: Consonant recognition. The right “total” column shows the number of samples per 

phoneme in the test set, and the bottom “total” row shows the number of samples categorized as 

each phoneme. The yellow diagonal shows correct categorizations, and the red cells show errors 

over 20%. 

Table 3: Vowel recognition, labeled as in Table 2.  



sample, Then, a dual tree wavelet transform was 

applied for feature extraction. Finally, a scaled 

conjugate gradient neural network was trained (on 

80% of the data) and tested  (on 20% of the data).  

Results 

Initially, we used a single neural network to 

categorize all 40 phonemes for one subject. The 

resulting success rate was 18% (2500 iterations) - 

considerably better than chance, but not good enough 

to be useful for speech recognition. Then, we tried to 

categorize only the vowel phonemes. 

Results from vocalized speech recognition 

led us to expect very poor results for the 18 vowels, 

and we were pleased to achieve a 36% success rate, 

using 2500 iterations in training (see Table 3). Not 

surprisingly, those pairs that human listeners find 

difficult to discern (e.g. ix, “sick”, vs. ih, “hit”), were 

also often confused by our system. 

The 22 consonants had a higher relative 

success rate of 33% after 1500 iterations (see Table 

2). It seems that voicing is not easily detected by the 

system, in that confusable pairs (e.g. d, voiced 

alveolar plosive, and t, voiceless alveolar plosive) are 

often distinguished only by voicing. Also, the 

network seems to put difficult-to-identify items into 

“garbage can” categories, and seemed to have 

particular difficulty with the alveolar consonants. 

The above results suggested that the 

phonological features used to distinguish vocalized 

phonemes might also be relevant for subvocalized 

phonemes, and that a productive approach might be 

to train specialized networks to categorize the 

phonemes based on these features. These networks 

could then be arranged into a decision tree, which 

could then be used to categorize all 40 phonemes 

effectively. 

The next step, then, was to see if specialized 

networks could recognize the key phonological 

features. We have not yet completed this step, but 

partial results are given in Table 4. In several cases, 

one or more categories had very few samples, leading 

to unreliable results. This problem can only be 

corrected by taking more samples. 

These partial results suggest that a decision 

tree something like the one in Figure 3 might be 

effective at categorizing the full phoneme set. If the 

accuracy estimates at each node are correct, then this 

tree would have an overall accuracy of 50-60%. Note 

that both the binary features for the vowels and the 

combination of manner and place of articulation for 

consonants are quite redundant, so that it should be 

possible to lower error rates by looking for feature 

combinations. 

Distinction Categories Success Rate Epochs Note

consonants vs. vowels 2 83% 2000

CONSONANTS

between alveolar consonants 7 75% 1000

between plosive consonants 6 77% 500

between fricative consonants 9 64% 1000 voiced vs. unvoiced are confused

between places of articulation 6 35% 500 probable sampling problem

between manners 7 n/a n/a sampling problem

pairwise, voiced vs unvoiced 2 100% 500 possible sampling problem

VOWELS

between all simple vowels 10 63% 1000

simple vs dipthong vs schwas 3 n/a n/a sampling problem

high+/low+/neither 3 83% 1000

front+/back+/neither 3 83% 1000

round +/- 2 81% 1000 errors are all false negatives

tense +/- 2 70% 1000 errors are all false positives

pairwise, simple vs. schwa 2 100% 500 possible sampling problem

Table 4: Results of using specialized networks to distinguish between phonemic features. 

"Sampling problem" in the notes column indicates that at least one of the categories has too 

few samples for the categorization to be reliable. 



Further Work 

The immediate next step is to complete the 

above analysis, and determine whether or not the 

decision tree approach will reduce error rates. Also, 

we should experiment with sensor placement – 

perhaps some problem feature distinctions can be 

eliminated or reduced if the sensors are placed to 

detect key muscle movements.  

We have, however, achieved our primary 

goal, which was to establish a baseline for sub-

auditory speech recognition. Also, it seems that 

features of spoken speech that are relevant to 

auditory speech recognition are also relevant to sub-

auditory speech recognition (i.e. using an EMG 

signal). This suggests that techniques which have 

proven useful in processing spoken speech, such as 

diphone or triphone recognition, would also be useful 

in processing sub-auditory speech. We plan to 

explore further in this direction. 
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Consonant vs. Vowel (83%) 

Simple+Schwa vs. Dipthongs 90%? Manners AND Places of Articulation 
(redundancy) 60%? 

Binary features 
(redundancy) 80%? 

Between dipthongs 80%? 

 Pairwise Simple vs. Schwa (100%) 

Pairwise Voiced vs. Unvoiced (100%) 

Figure 3: Possible decision tree, using specialized networks that categorize based on phonemic 

features. Question marks indicate hoped-for accuracy once sampling problem is solved. 


